
 

Journal of Mathematical Sciences & Mathematics Education                                            1 
 

Computational Solutions of the Equations for a Multi-
dimensional Diffuse-Interface Model of Compressible Fluid 

Flow with Capillary Effects 
 
                        Diane Denny, Ph.D. † 
                           
                           Abstract 
 
We study the initial-value problem for a system of equations arising from a diffuse-
interface model of low-speed flows of compressible fluids with capillary stress effects. 
We compute solutions to an initial-value problem with suitable initial data and boundary 
conditions on a bounded domain. We also compute solutions to a related stochastic 
system of differential equations for the mean and fluctuation of the flow variables. 
 
                          Background   
 
Many scientists are interested in the problem of explaining and predicting the behavior of 
fluids near the liquid-vapor critical point. Near the critical point, many of the 
thermophysical properties of a fluid exhibit a singular behavior. For instance, the 
isothermal compressibility and the isobaric thermal expansion coefficients, as well as the 
isobaric specific heat, all diverge at the critical point. Critical enhancement effects are 
also encountered in the behavior of the thermal conductivity and the viscosity in the 
vicinity of the critical point. Near the critical point, the divergence of the compressibility 
leads to macroscopic density gradients (upon which microscopic density fluctuations are 
superimposed). It has been shown that temperature changes in a near-critical fluid can 
occur rapidly via a mechanism which creates adiabatic pressure changes in the bulk of the 
fluid [2]. Although early adiabatic processes act rapidly to accomplish most of the 
temperature changes (in seconds), most of the alteration of the density variations is a non- 
adiabatic process, driven by the much slower (hours-long) process of heat diffusion. 
Studies have shown that large density variations slow down the dynamics and reduce the 
effectiveness of the adiabatic mechanism; however, the adiabatic effect is still responsible 
for most of the temperature changes [2]. These conclusions drawn by previous 
researchers were based on results derived from one-dimensional models. No studies of 
how three-dimensional flow effects alter the overall dynamics, or how the capillary 
effects contribute to the energy, have been performed so far. 
 
Simulation of the three-dimensional flow of a near-critical fluid using a diffuse interface 
model (which includes the effect of viscosity, heat conduction, and capillary stresses on 
fluid properties) and analysis of the results obtained, are the main focus of this paper. 
Previous studies of near-critical fluids have concentrated on studying models of one-
dimensional flows in which the interface is modelled as a free boundary, with separate 
systems of equations describing the flow on each side of the interface. The sharp 
interface model, which utilizes a free boundary description of the interface between two 
fluids, breaks down as a physical model when the interfacial thickness is comparable to 
the length scale of the phenomena being examined. For example, in a near-critical fluid 
the thickness of the interface diverges at the critical point, and consequently the 
representation of the interface as a zero thickness boundary may no longer be appropriate. 
Another difficulty associated with the free-boundary formulation arises in its use in 
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computational settings when the free boundary shape becomes complicated or self-
intersecting. Diffuse interface models, which use a single set of equations to model the 
fluid flow and which incorporate capillary stresses in fluid flow equations, provide an 
alternative description in the face of these difficulties [1]. Local and global existence of 
unique solutions to the diffuse-interface model equations has been proven by a number of 
researchers (for example, Hattori and Li [3], [4], [5]). Few numerical studies of these 
particular diffuse-interface model equations have been performed; those studies which 
have been conducted considered only one-dimensional versions of the model equations. 
 
For the purpose of this paper, we use the diffuse-interface model equations (given below) 
for the flow of a compressible, viscous, heat-conducting fluid near the critical point. Our 
objective is to study how multi-dimensionality affects the flow variables. An additional 
objective is to develop stochastic partial differential 
equations based on the diffuse-interface model which incorporate the effect of 
uncertainty in the data, and then numerically compute solutions to the equations thus 
obtained. 
 
We consider the low-speed flow of compressible, viscous, heat-conducting fluid. The 
equations of motion include forces due to capillary stresses that arise from a contribution 
made by strong density gradients to the free energy. The diffuse-interface model we are 
considering consists of the following system of 
equations: 
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where ρ  is the density, θ  is the temperature, and vr  is the velocity. Here, κ  is the 
coefficient of thermal conductivity, m is the capillary stress coefficient (which is a 
constant), and μ  is the viscosity coefficient. Also, pα  is the isobaric thermal expansion 

coefficient, and vp cc ,  are the specific heat capacities at constant pressure and at 

constant volume, respectively. The equation of state for the pressure is ),(ˆ θρpp = . 
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∂
∂

= v
tDt
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We consider a fluid layer with rigid horizontal boundaries and periodic boundary 
conditions on the remaining sides. First, we apply the diffuse-interface model equations 
to fluid flow near the liquid-vapor critical point and compute numerical solutions to these 
equations with the “no-flux” conditions , ,0,0 =•∇=•∇ nn rr θρ  for the density and 
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temperature, and the “no-slip” condition 0=vr  for the velocity at the horizontal 
boundaries (z=0,z=1). Then we will incorporate uncertainty in the data into the model 
equations and compute solutions. 
 

Scaling and Non-dimensionalization 
 
We non-dimensionalize and scale the variables in a manner appropriate to a typical 
experiment for the fluid xenon near the liquid-vapor critical point. We obtain the 
following non-dimensional equations (non-dimensional quantities are indicated by an 
asterisk, *): 
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where the gradient and the divergence are taken with respect to the non-dimensional 

spatial variable, and ∇•+
∂
∂

= *
** v

tDt
D r

 Here TD  is a non-dimensional diffusivity, 

M is a small parameter proportional to the characteristic velocity, Re is the Reynolds 
number, and c is proportional to the constant coefficient m of capillarity. Γ  is a ratio of 
specific heat capacities. The dimensionless constants 112 ,,Re, −− ΓTDM , and c are 
estimated as follows: 
 

21341725 105.4Re,1044.4,108.1,103,106 −−−−−−− ×=×=×=Γ×=×= cMDT
 
 
                       Computational solutions 
 
To compute the solutions, a finite difference scheme was employed. The Douglas-
Rachford method was used in discretizing the diffusion term in the temperature equation 
and also in discretizing the viscosity term in the momentum equation. A second-order 
Adams-Bashforth method was used to discretize the remaining terms in the temperature 
and momentum equations, and was also used for the continuity equation. Periodic 
boundary conditions were applied in the x,y directions. The “no-flux” conditions 

,0,0 =•∇=•∇ nn rr θρ  were used for the density and temperature, and the “no-slip” 
condition 0=vr  was used for the velocity at the horizontal boundaries (z=0,z=1). The 
following initial data was used to study a problem in which the density ranges 
continuously from a lower bound of ρ  =1.09 at the z=1 boundary to an upper bound of 
ρ  =1.1 at the z=0 boundary. The initial data for temperature ranges from θ  =1.102 at 
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z=1 to θ  =1.1 at z=0. The initial data for velocity ranges from values of 0 to 1 in each 
velocity component (u,v,w). 
 
Initial data: 
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Solutions were computed for each of the flow variables at z=0.5, after 800 time steps, 
which corresponds to approximately 10 seconds of elapsed time. The results demonstrate 
that there is a variation in the values of the flow variables, which depends on the values 
of x and y. The density values ranged from 1.08 to 1.13, with the largest variation 
occurring near the boundaries, and averaging around 1.1 away from the boundaries. The 
temperature values ranged from  0.6 to 1.2, averaging at about a value of 0.9, with the 
largest values occurring near the center at (x,y)=(0.5,0.5). Although the initial data for the 
velocity components was positive, after 800 time steps the u,v components had both 
negative and positive values, ranging from -0.02 to 0.04 in the u component, and ranging 
from -0.02 to 0.04 in the v component. The largest changes in the values of the u 
component occurred in the direction of the x-axis. The largest changes in the values of 
the v component occurred in the direction of the y-axis. The w component values were 
positive, remaining at nearly a constant value of 0.01. 
 

The Stochastic Model Equations 
 
We considered the effect of uncertainty in the model equations' parameters and in the 
initial data. The boundary data was considered to be deterministic; the same boundary 
conditions were employed as were used for the deterministic model. The random 
variables were expanded in a perturbation series, and then solutions to the zero-order and 
first-order equations were computed. The solutions to the first-order equations yielded an 
estimate of the zero-mean fluctuation of each random flow variable. 
 
The perturbation expansions were: 
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where the zero-order variables are approximately the mean of each random flow variable. 
The equations for the zero-order and first-order equations are as follows: 
Zero-order equations: 
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First-order equations: 
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The initial data used for the zero-order equations was the same as was used for the 
deterministic equations. The following initial data was employed for the first-order 
equations: 
 

)8sin()2sin()2sin(1.0|
)8sin()2sin()2sin(1.0|

)8sin()2sin()2sin(1.0|

)8cos()2sin()2sin(1.0|

)8cos()2sin()2sin(1.0|

0
1

0
1

0
1

0
1

0
1

zyxw
zyxv

zyxu

zyx

zyx

t

t

t

t

t

πππ

πππ

πππ

πππθ

πππρ

=

=

=

=

=

=

=

=

=

=

 

 
Solutions were computed for the zero-mean fluctuation of each of the random flow 
variables at z=0.5, after 800 time steps, which corresponds to approximately 10 seconds 
of elapsed time. The results demonstrate that there is a variation in the values of the zero-
mean fluctuation of the random flow variables, which depends on the values of x and y. 
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The values of the zero-mean fluctuation of the density ranged from -0.0002 to 0.0003, 
with the largest variation occurring in the direction of the x-axis. Although the initial data 
for the zero-mean fluctuation of the temperature had both positive and negative values, 
after 800 time steps the values of the zero-mean fluctuation of the temperature were 
positive, ranging from 0.02 to 0.1, with the largest values occurring near the center at 
(x,y)=(0.5,0.5). The values of the zero-mean fluctuation of the u component of the 
velocity ranged from -0.0003 to 0.0005, with the largest variation occurring in the 
direction of the x-axis. The values of the zero-mean fluctuation of the v component of the 
velocity ranged from - ×0.1 710−  to ×0.1 710− , with variation present in both the x 
and y directions. The values of the zero-mean fluctuation of the w component of the 
velocity ranged from - ×0.3 810−  to ×0.1 710− , with variation present in both the x 
and y directions. 
 

Conclusion 
 
The results of the numerical computation indicate that the flow variables do exhibit 
variation in both the x and y directions. Previous studies done using one-dimensional 
models considered variation in the flow variables in only the z direction. As a example, 
we considered the computed solutions at z=0.5, after 800 time steps (approximately 10 
seconds). For this example, it was found that most of the density variation occurred in the 
boundary layer. Also, the largest temperature values occurred near the center of the 
domain. The most variation in the values of the velocity components occurred in the u,v 
components. The results for the zero-mean fluctuations of the random flow variables 
show that variation in the values of the fluctuations occurred in both the x and y 
directions. The largest fluctuations after 800 time steps appeared in the values of the 
zero-mean fluctuations of the temperature. The zero-mean fluctuation of the u component 
of the velocity was larger than the fluctuations of the v, w components. 
 
This is only a first attempt at studying the effects of multi-dimensionality in the diffuse-
interface model equations. Much work remains to be done in the area of simulating multi-
dimensional, near-critical fluid flows. 
 
Diane Denny, Ph.D., Texas A&M University-Corpus Christi, Texas, USA.  
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