
 

Journal of Mathematical Sciences & Mathematics Education                                          7 
 

Fluid Flow around an Elliptic Cylinder using 
Finite Element Method 

 
Dambaru D. Bhatta Ph.D.† 

 
Abstract 

 
We present the Finite Element Method (FEM) to compute the solutions of Laplace/ 
Poisson equations in terms of stream function. First fluid flow equations for an inviscid 
incompressible fluid are derived in terms of velocity potential and stream functions. A 
boundary value problem (BVP) governed by Laplace/Poisson’s equations with Dirichlet 
and Neumann boundary conditions is considered. We use the triangular elements to 
obtain the FEM solution. As a specific example, we consider a BVP that arises from an 
inviscid incompressible flow around an elliptic cylinder. 
 

MATHEMATICAL FORMULATION 
 

Two dimensional boundary value problems given by Laplace’s and Poisson’s equations 
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occur very frequently in applied mathematics, science, and engineering ([1], [2], [3], [4]). 
Few physical situations which can have models involving these equations include: 
incompressible inviscid fluid flow, steady state heat conduction problems, diffusion flow 
in porous media, torsion problems in solid mechanics, electrostatic potentials, 
gravitational or Newtonian potentials and magnetostatics. 
 

FLUID FLOW EQUATIONS 
 

Equation of continuity is given by ([4]) 
 

( ) 0div =+
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∂ q

t
rρρ

                                                         (2) 

Here q=(u, v)  is the velocity, ρ  is the density of the fluid. If the fluid is incompressible, 

then ρ  is constant, and the equation of continuity becomes div ( q ) = 0.  If the motion is 

irrotational, we have curl q= 0 . For this case, there exist a scalar function φ  ; called 

velocity potential function, such that q  = grad φ . The velocity components (u; v) of  q   

are given by 
x
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  .   

Thus φ     satisfies the Laplace equation 
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Stream function,  ψ  and velocity potential φ    are related by  
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 , so that   ψ  satisfies the Laplace equation 
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PROBLEM STATEMENT 

 
We consider the following boundary value problem (BVP) 
 

( ) ( ) Dyxfyxu in0,,2 =+∇                                  (5) 

( ) 1on Γ= sgu                                  (6) 

( ) ( ) 2on Γ=+
∂
∂ shus
n
u α                                  (7) 

 
where D  is the interior of the domain, and ¡1 and ¡2 constitute the boundary ¡. The 
boundary condition on ¡1 is referred to as Dirichlet (Essential) boundary condition. The 
boundary condition on ¡2  is known as Robins boundary condition. If  α = 0, equation (7) 
becomes Neumann (Natural) boundary condition. 

 
SOLUTION BY FINITE ELEMENT METHOD 

 
We employ the following steps to solve this BVP using finite element method (FEM): 

 
1. Domain discretization. 
2. Weak formulation. 
3. Derive interpolation function. 
4. Computation of element matrices and boundary integrals. 
5. Assembly of element equations. 
6. Imposition of biundary conditions. 
7. Solve the matrix equation. 
8. Postprocessing of the solution. 
 
 

DOMAIN DISCRETIZATION 
 

First we discretize the whole domain by dividing it into a finite number of elements. That 
is why this method is called Finite Element Method (FEM). Here we use linear triangular 
elements. These elements are constructed by joining the nodes. We use three nodes for 
each triangular element. Another common element used in FEM is quadrilateral element. 
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We need to number the elements and nodes for implementation. Now we consider a 
particular element e    with its area  D e

 and boundary ¡ e
  . 

 
 
 

WEAK FORMULATION 
 

The weak form is derived from a weighted integral statement. First, we multiply the 
governing equation (5) by a test function w(x,y);   which has first order partial 
derivatives, and then integrate the resulting equation over the element e to distribute the 
differentiation evenly between u and w as follows: 

( ) ( ) ( )[ ] 0,,, 2 =+∇∫∫ dAyxfyxuyxweD
                     (8) 

To obtain the weak formulation, we use the following theorem 
dsqndAq eeD

rrr .div
Γ
∫=∫∫                                              (9) 

where q  is a vector field and the line integral is evaluated in a counter-clockwise sense 

around the bounding curve ¡ e
  with the normal >=< yx nnn ,  pointing outward. 

Equations (8) and (9) yield 
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= . The first integral on the right is a line integral taken in the 

counter-clockwise direction around the boundary  ¡ e
. 

 
INTERPOLATION FUNCTIONS AND COMPUTATIONS OF kiA   AND kb  

 
Now  u(x, y) is approximated over a typical element e  by 
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where  e
ju  is the value of  U e

 at the jth node ( jx , jy ) of the element e , and   e
jN  (x,y)  

is the interpolation function with the properties 
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Substituting the approximation (11) for   u  into the weak form (10), we obtain (dropping 
the superscript  e    ) 
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The equation (13) contains n   variables ,1u ,2u ….., nu  . We construct n algebraic 
equations by choosing N1; N2; :::::;Nn  for w :  We can write this  n x n  set of linear 
algebraic equations as 
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The linear interpolation functions, iN (x,y),   for the triangular element are given by 
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Here ii βα ,  and iγ  are constants given by kjijkkji yyjxyx −=−= βα ,  and 

( )kji xxy −−= .  The evaluation of the element matrices kiA  and vectors kb  involves 
evaluation of double integrals over triangular elements. Most of the time, numerical 
integration techniques (Gaussian quadrature, area coordinates) are used to compute those 
integrals. 
 

ASSEMBLY AND IMPOSITION OF BOUNDARY CONDITIONS 
 
To assemble finite element equations we use the continuity of primary variables,  u(x, y), 
and the balance of the secondary variables. The continuity of the primary variables at the 
inter-element nodes guarantees the continuity of the primary variables along the entire 
inter-element boundary. The assembled equations can be partitioned into: 
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where { }1U  is the column of known primary variables, { }2U  is the column of unknown 

primary variables,  { }1B    is the column of unknown secondary variables, and { }2B  is 
the column of known secondary variables.  Writing (17) as two matrix equations, we get 
 

 
and 

 
 
 
Now we can find  

 
Once { }2U   is known, { }1B  can be computed. 
 

POSTPROCESSING OF THE SOLUTION 
 
The finite element solution and its derivatives are computed at any point  (x, y) in an 
element e   using 
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FLOW AROUND AN ELLIPTIC CYLINDER 

 
The irrotational flow of an inviscid fluid about a elliptical cylinder, placed with its axis 
perpendicular to the plane of the flow between two long horizontal walls is analyzed 
using FEM. Due to symmetry, we consider one quadrant, ABCDE, of the whole domain 
as shown in the figure I. The BVP is written in terms of stream function ψ  
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We use 32 elements and 25 nodes to discretize this domain as shown in figure 2 and   the 
finite element results at the nodes are presented in table 1. 
 
 

Table I 
FEM Solutions at Various Nodes 

 
Node # x-y coordinate FEM Solution 

7 (1.392,    0.784) 0.759 
8 (2.398,    0.628) 0.514 
9 (3.017,    0.532) 0.219 

12 (1.500,    1.421) 1.401 
13 (2.583,    1.003) 0.853 
14 (3.250,    0.745) 0.325 
17 (2.750,    1.454) 1.327 
18 (3.291,    1.059) 0.716 
19 (3.625,    0.817) 0.222 
22 (4.000,    1.464) 1.221 
23 (4.000,    1.077) 0.602 
24 (4.000,    0.839) 0.174 
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