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Abstract 

 
Many undergraduate curriculums in mathematics now include some form of a 

research project.  However, even talented students often remain at a loss on exactly how 
to proceed.  Instructors are faced with trying to identify an area of student research that is 
sufficiently complex so that there is little or no existing results already produced and at 
the same time trying to insure that the student has the tools necessary to proceed as 
independently as possible.  Most students end up relying heavily on their advisors, but 
there is help available. In his article, “But How Do I Do Mathematical Research?” Suzuki 
[1] suggests that by first categorizing mathematical research students may find it easier to 
plan and navigate their own research. This paper focuses on the category of proof as a 
method of research and uses mathematical induction to reprove a discrete case of the 
Minkowski Inequality. 
 

Introduction 
 

More and more undergraduate curriculums in mathematics are including some 
form of student research. Suzuki [1] uses the acronym PEACE as a mnemonic device to 
represent general categories of undergraduate research:  Proof, Extensions, Application, 
Characterization, and Existence.  This paper is concerned with the first category Proof 
which includes reproof as a significant form of mathematical research. 
  

Every mathematic project includes proof, but reproof is often overlooked as a 
vital method of mathematical research.  Case in point, in 1799 the University of 
Helmstedt granted Gauss a Ph.D. in mathematics for a dissertation that gave a new proof 
of the Fundamental Theorem of Algebra, a polynomial, )(zP , of degree n has n values 

iz  
for which 0)( =izP . Another fine example is the Pythagorean Theorem, let a, b, and c be 

two sides and the hypotenuse (respectively) of a right triangle, then 222 cba =+ .  
Indeed, The Pythagorean Proposition compiled in 1907 [2] contains approximately 365 
distinct proofs of Pythagoras' theorem.  
  

Mathematical Induction 
 

Mathematical Induction (MI) is a method of mathematical proof typically used 
to establish that a given statement is true of all natural numbers n, or otherwise is true of 
all members of an infinite sequence which will be demonstrated in this paper.  The 
simplest and most common form of MI consists of two steps, the basic step and the 
inductive step.  The basic step shows that the statement holds when n = 1 and is followed 
by the inductive step showing that if the statement holds for n = k for some 1≥k , then the 
same statement also holds for n = k + 1. For example, suppose we wish to prove the 
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statement: 
2

)1(...321 +
=++++

nnn  is true Nn∈∀ .  It would take a considerable effort 

to demonstrate this was true just for the first 100 positive integers. An old, and not 
necessarily true, tale of Gauss describes how his schoolteacher wanted some quiet and 
subsequently instructed the class to add up the integers from 1 to 100. Gauss, then a 
young boy, quickly solved the problem by repeatedly pairing off the biggest and smallest 
numbers, )5150(...)992()1001( ++++++ .  Note that each pair adds up to 101, and that 
there are exactly 50 such pairs. So the sum is 5050. This example often serves as a 

demonstration of using MI to prove the formula
2

)1(

1

+
=∑

=

nnk
n

k

 Nn∈∀  in many 

mathematical books.  However, MI is not limited to proofs involving series. MI can be 
used for demonstrating divisibility, such as 12 12 +−n  is divisible by 3 Nn∈∀ , or for 
proving inequalities such as, εε nn 31)1( +<+  for 10 << ε , Nn∈∀ .  Regardless of the 
mathematical nature of the statement, each proof by MI requires the application of the 
induction hypothesis.  This is usually achieved by relating the statement )1( +nP  to the 
statement )(nP . However, this does not mean that proof by MI is a purely procedural 
activity as we will demonstrate in this paper. 
 

Minkowski’s Inequality 
 

In mathematics, the triangle inequality states that given any triangle with sides 
of length a, b and c, then bac +≤ .  Equivalently, for complex numbers 1z  and 2z , we 
write, 2121      zzzz +≤+  where   z represents the length of a complex number z.  If we 

define 
2

1

1
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⎝

⎛
= ∑

=

n

k
kaa to be the length of a vector nCnaaaa ∈= ),...,2,1(  where C is the 

set of all complex numbers, and define the addition of two vectors in the usual way, we 
have a triangular inequality in nC . The discrete Minkowski’s Inequality with 2=p is 
such a triangular inequality. Here, we introduce a popular proof of this Minkowski’s 
Inequality as the following theorem.  
 
Theorem.  Let  ,...,, 21 naaa and nbbb ..., , , 21  be complex numbers.   

Then,
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Proof [3, p. 25]. ∑ ∑∑
= ==

===
n

j

n

j
jjj

n

j
j baCbBaA

1 1

2

1

2
    and ,   , Let .   

kbB k     0 then 0 If ∀== , and the conclusion is trivial. 
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  BCCA +++=  
   ( ) BCA ++= Re2  
   BCA ++≤ 2  

   BBAA ++≤ 2  

   ( )2BA +=  
where the second inequality is Cauchy’s Inequality (or CBS-Inequality). 

Thus, 
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Now, we reprove the Minkowski’s Inequality (discrete case p = 2) by using MI.  
 
Proof. For 1=n  the inequality is merely a restatement of the triangle inequality in C, 

1111   baba +≤+ .  Now, assume that Minkowski’s Inequality is true for Nn = for 
some 1N ≥  and use MI to show that  
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We define that  0 
0

1

=∑
=j

jz  for our convenience.  

Begin with LHS,  
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Notice that ( ) ( )( )2
1

22
1

22
11 ++++ ++≤+ NNNNNNNN bbaababa , we have 
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( )( )2
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11 2)Re(2)Re(2 ++++ ++≤+ NNNNNNNN bbaababa , 

 
and the LHS is less than or equal to 
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Defining  ( )2
1

2
++= NN aaα   and ( )2

1
2

++= NN bbβ   and applying the induction 
hypothesis, we have, 
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We have completed the MI and hence, 
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Conclusion 

 
There are many examples of mathematical proofs introduced in undergraduate 

courses that can be reproven through a variety of different processes. Here we 
demonstrated reproof using MI, but in this proof the statement )1( −nP  is cleverly related 
back to the statement )1( +nP . This reproof of Minkowski’s Inequality is mathematically 
difficult enough to be a significant learning experience for the student, but at the same 
time uses only elementary properties of complex numbers, summations, and algebra, and 
the method of MI, thereby encouraging the student to work relatively independently. 
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