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Abstract 
 

        Here we consider the first order wave diffraction by a cylindrical structure. 
The cylindrical structure is circular, vertical, surface piercing in water of finite 
depth. First we state the boundary value problem in terms of velocity potential 
function. The formulation of the wave-structure interaction is based on the 
assumption of a homogeneous, ideal, incompressible, and inviscid fluid. 
Inclusion of irrotationality allows us to introduce the velocity potential function 
which satisfies the Laplace equation in the fluid domain. The nonlinearity for 
the wave-structure interaction problem arises from the free surface boundary 
conditions. We use the separation of variables method to solve the first order 
problem by writing the total velocity potential as the sum of the incident 
velocity potential and the scattered velocity potential. From the combined free 
surface condition, we derive the dispersion relation. After deriving the pressure 
using Bernoulli’s equation, we obtain the analytical expression for the first order 
force on the cylinder by integrating the pressure over the wetted surface. 
Numerical results for the dispersion relation and wave loads for various depths 
to radius ratios are presented.  
 

Introduction 
 
        The computation of the water wave forces on offshore structures is one of 
the main interests in designing safe offshore structures.  The structure may be 
fixed or floating as semi-merged structure in sea. There is a large number of 
structures which are composed of tubular members like circular cylinders. When 
the structure spans a significant amount of wavelength, the incident waves 
undergo scattering or diffraction. Diffraction of waves needs to be considered 
while evaluating the wave forces.  
 
       Dean and Dalrymple [2] presented a review of potential flow 
hydrodynamics. Solutions for standing and progressive small amplitude water 
waves provide the basis for application to numerous problems of engineering 
interest. They discussed the formulation of the linear water ware theory and 
development of the simplest two-dimensional solution for standing and 
progressive waves. Debnath [3] discussed theoretical studies of nonlinear water 
waves over the last few decades. His work is primarily devoted to the 
mathematical theory of nonlinear water waves with applications. He studied the 
theory of nonlinear shallow water waves and solitons, with emphasis on 
methods and solutions of several evolution equations that are originated in the 
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theory of water waves. Johnson [4] describes the mathematical ideas and 
techniques that are directly relevant to water wave theory. Beginning with the 
introduction of the appropriate equations of fluid mechanics, together with the 
relevant boundary conditions, the ideas of nondimensionalisation, scaling and 
asymptotic expansions are briefly explored. Rahman [6] presented an 
introduction to the mathematical and physical aspects of the theory of water 
waves. He discussed the wave theory of Airy, nonlinear wave theory of Stokes, 
tidal dynamics in shallow water. He mentioned about the dynamics of floating 
offshore structures.  
  
       In the present work, we present the boundary value problem for a fixed 
cylinder in water of uniform depth. The velocity potential function satisfies the 
Laplace equation. We use the separation of variables method to solve the first 
order problem by writing the total velocity potential as the sum of the incident 
velocity potential and the scattered velocity potential. The solution is obtained in 
terms of Bessel’s functions. From the combined free surface condition, we 
derive the dispersion relation. After deriving the pressure using Bernoulli’s 
equation, we obtain the analytical expression for the first order force on the 
cylinder by integrating the pressure over the wetted surface. Numerical results 
for the dispersion relation and wave loads for various depth to radius ratios are 
presented. 
 

Velocity Potential Function 
 
       Here we consider a fixed vertical cylinder in water of finite uniform depth. 

The cylinder extends from sea bed  (z = -h)  to the free surface ),,( tyxz η= . 

Water depth is h. ),,( tyxη  is the free surface elevation function and r is the 
radius of the cylinder. Incident wave is propagating along positive x-direction. 
The incoming wave incident upon the surface of the cylinder undergoes a 
diffraction or scattering. To evaluate the wave loads in the cylinder we need to 
consider the effect of the incident wave and the diffracted wave.  

The cylindrical coordinate system ),,( zr θ with z vertically upwards from the 
still water level (SWL ), r measured radially from the from z-axis and θ  from 
the positive x-axis is used. For Cartesian coordinates (x, y, z), xy-plane 
represents the still water level (SWL) and z-axis positive upward from the SWL. 

Cartesian and Cylindrical coordinates are related by θcosrx = , θsinrx = , 
z=z. The formulation is based on the assumptions of ideal, incompressible and 
inviscid fluid. We assume that sea floor is flat and horizontal, and situated at  z = 
-h.  
The equation of continuity for a fluid with velocity, v  and density, ρ   is given 
by  

0)( =⋅∇+
∂
∂ v

t
ρρ

                                                   (1)  
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For incompressible fluid, the continuity equation is  

                   0=⋅∇ v                                                       
(2) 
For an incompressible and inviscid fluid with irrotational motion, we can 

introduce a velocity  ),,,( tzr θφ such that  

                                 ),,,( tzrv θφ∇=                                                (3)                        
Equations (2) and (3) yield that the velocity potential satisfies the Laplace 
equation in the fluid domain, i.e., 

  0),,,(2 =∇ tzr θφ                                                   (4) 

We will assume that ),,,( tzr θφ  is time harmonic.  

The horizontal force components yx FF ,
along  x, y directions are given by 

 

                     
∫ ∫
= −=

−=
π

θ

η

θθθ
2

0

)cos(),,,(
hz

x ddzatzaPF
                            (5) 

                     
∫ ∫
= −=

−=
π

θ

η

θθθ
2

0

)sin(),,,(
hz

y ddzatzaPF
                             (6) 

respectively. Here is the ),,,( tzaP θ  is the pressure on the curved surface of 
the cylinder which can be computed from the velocity potential using Bernoulli's 

equation.  ),,( tyxη  is the free surface elevation function.  
 

Boundary Value Problem in terms of Velocity Potential and Free Surface 
Elevation Functions 

 

       The boundary value problem in terms of that  ),,,( tzr θφ and  ),,( tyxη  
is  can be expressed as 
  
Governing Equation:  

                
02

2

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂

zyx
φφφ

                      (7) 

Dynamic free surface boundary condition at the free  surface ),,( tyxz η= : 
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Kinematic free surface boundary condition at the free  surface ),,( tyxz η= : 

                        
0=

∂
∂

−
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

zyyxxt
φηφηφη

                                    (9) 
Since the cylinder is fixed, the normal velocity is zero, so the body surface 
boundary condition on the curved surface:  

                          
ar

n
==

∂
∂ ,0φ

                                                  (10) 
where n is the outward normal. Assuming that sea floor is flat and horizontal, 
the bottom boundary condition at  z = -h  can be expressed 

                         
hz

z
−==

∂
∂ ,0φ

                                                (11) 
The velocity potential and the surface elevation can be written in terms of 
Stokes expansion as  

               )(),,,(),,,(),,,( 3
2

2
1 εφεεϕφ Otzyxtzyxtzyx ++=    

and            

               )(),,,(),,,(),,,( 3
2

2
1 εηεεηη Otzyxtzyxtzyx ++=                        

Here )( kA=ε is the dimensionless small parameter where k the 
wavenumber, A wave amplitude. Sub-index 1 is used to represent the first 
expansion term corresponding to a linear approximation and sub-index 2 is used 
for the second order approximation.  

At the free surface, we have ),,( tyxz η= , so  ),,,( tzyxφ = ),,,( tyx ηφ .  
Expanding by  Taylor's theorem about   z = 0, we have the modified velocity 
potential at the free surface is  
        

)(),0,,(),0,,(),,,( 3
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Dynamic free surface boundary condition now is given by  
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Kinematic free surface boundary condition now can be written as  
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Now comparing the coefficients of   ε  we can separate the free surface 
boundary conditions for various order. For the first order, at z = 0, the dynamic 
free surface boundary condition is  

                    
01

1 =+
∂
∂

η
φ g
t                                                            (12)  

and the kinematic condition becomes  

                   
011 =

∂
∂

−
∂
∂

zt
φη

                                                          (13)  
Eliminating the first order free surface elevation function from the equations 
(12) and (13), the combined free surface condition can be expressed  
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t

φφ

                                      (14)       
The pressure  P  is determined from Bernoulli's equation   
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.  
Substituting series expansion for the velocity potential, we have  
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Since the incident wave is propagating in x-direction, y-component of the 
horizontal force vanishes, and  the x-component is given by   
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Writing the z-integral as the sum of   
∫∫ +

−

η

0

0

h we obtain  
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Now we write  

                     
......

321

32 +++= xxxx FFFF εεε
 

where ixF
represents  the i-th order contribution. 

      Thus the first order force component is given by 
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First Order Diffraction Problem 

 
       The boundary value problem for first order potential $\phi_{1}$ becomes 
Governing Equation:  
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Combined free surface boundary condition:  
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Body surface boundary condition:  
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Bottom boundary condition:  
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∂
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                                   (22)                     

We assume the ),,,( tzr θφ   is time harmonic, i.e.,  
 

                   [ ]tiezrtzr σθθφ −Φ= ),,(Re),,,( 11                                  (23)                

where ).,(1 zr θΦ is the complex velocity potential and σ  is the frequency 
of the wave. Now we solve the linear boundary value problem by decomposing 
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the complex velocity potential into incident potential ).,(1
)( zrI θΦ and 

scattered potential ).,(1
)( zrS θΦ as follows 

 

                ),,(),,(),,( 1
)(

1
)(

1 zrzrzr SI θθθ Φ+Φ=Φ                         (24) 
The complex incident velocity potential can be obtained as  
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and the complex scattered velocity potential can be derived as  
 
           

∑
∞

=
′

+
−=Φ

0

)1(
')1(

'
)(

1 cos)(
)(

)(
cosh

)(cosh
1

m
m

m

mm
m

S mkrH
kaH

kaJi
kh

hzkgA θβ
σ

 
 

Here 10 =β ,  1,2 ≥= mmβ ;   )(krJ m   and  
 

))()(()()1( kriYkrJkrH mmm +=  are Bessel and Hankel functions of first 
kind of order  m  respectively [1, 5]. We use the separation of variables method 

to obtain these solutions by writing )()()(),,(1 zZrRzr θθ Θ=Φ . This 
yields Bessel equation, for the incident potential we obtain the solution in terms 
of Bessel function of first kind and for the scattered potential we obtain the 
solution in terms of Hankel function of first kind. Scattered potential satisfies 
the radiation condition. Thus the first order velocity potential can be written as 
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(25)     

Dispersion Relation for the First Order Theory 
 
       Combined free surface condition for the first order complex velocity 
potential is given by 
 

          
0,0),,(

),,(
1

21 ==Φ−
∂

Φ∂
zonzr

z
zr

g θσ
θ

      



 

Journal of Mathematical Sciences & Mathematics Education                           14 

Now, on z  = 0, we have 
.)tanh( 1

1 Φ=
∂
Φ∂

khk
z  From the combined free 

surface  
 

condition,  we can write 0.)tanh( 1
2

1 =Φ−Φ σkhkg .  Thus the dispersion 
relation can be written as  

                        khkg tanh2 =σ                                       (26) 
which describes a relation between the wavenumber, k and the frequency, σ . 
To obtain computational results, we consider non-dimensional parameters  ka  
and  kh = (ka.h/a) so  that we have  

                         
⎟
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                                (27)         
Now we present the numerical results of the dispersion relation for various depth 
to radius ratios. We consider the following ratios: h/a = 1, h/a = 2, h/a = 5.  The 
following table describes the values of  ka  for which  
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First Order Force Component 
 
       First order complex velocity potential is      
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Since  

                                           nm

nmdnm

==

≠=∫
π

θθθ
π

0coscos
2

0

 
and θcos  appears in the force computation, we need to consider only terms 

involving   θcos  in the expression of  ).,(1 zr θΦ . So for m = 1 and  r = a, 
we obtain 
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Thus the first order force is  
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where  
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Non-dimensional component is  
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Thus the maximum non-dimensional first order force is given by  
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Numerical Results 
 
 
       Now we present the numerical results of the dispersion relation for various 
depths to radius ratios. We consider the following ratios: h/a = 1, h/a = 2, h/a = 
5.  Table I describes the values of  ka  for which  

.0tanh
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=⎟
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⎛−

a
hkaka

g
aσ

  
Figure I presents the dispersion relation as a function  ka  for  h/a = 1 for various  

g
a2σ

.  Zeros can be observed from this graph which matches with the values 
mentioned in   table I. 
Now we present the computational results for the first order non-dimensional 
horizontal force component given by equation (30). Horizontal component is 

non-dimensionalized by dividing it by Aga2ρ . Various depth to radius ratios 
we consider are  h/a = 1, h/a = 2, h/a = 5. Figure II and figure III depict the non-

dimensional horizontal force component for  6/πσ =t  and  4/πσ =t . 
We display the graphical results for the non-dimensional horizontal force 
component (30) for various  tσ  for a particular depth to radius ratio, h/a = 2. It 
has been displayed in figure IV.  
Now we present the non-dimensional maximum horizontal force component 
given by the equation (31). For h/a = 1, h/a = 2, h/a = 5. Figure V depicts the 
maximum non-dimensional horizontal force component.  
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From all the above results it is obvious that the force component is more 
effective when the parameter  ka  ranges between 0.5 and 1.5.  Larger the depth 
is larger the force. The effect is negligible for large ka.   
 

Table I  

Zeros of Dispersion relation (27) for various  g
a2σ

  and  h/a 
 

↓

→

a
h
g

a2σ

 

1 2 3 5 

1 1.199679 2.065338 3.014483 5.000454 

2 1.032669 2.001335 3.000037 5.000000 

5 1.000091 2.000000 3.000000 5.000000 
 
 

Figure 1. 
Zeros of Dispersion relation (27) for various  tσ   with  h/a = 1 
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Figure II 

 Non-dimensional horizontal force component for various   h/a 

with 6/πσ =t  

 
 
 

Figure III 
 Non-dimensional horizontal force component for various  h/a 

with  4/πσ =t  
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Figure IV 

 Non-dimensional horizontal force component for various  tσ  
with  h/a = 2.0 

 
 
 

Figure V 
Non-dimensional maximum horizontal force component for various  h/a. 
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