
 

Journal of Mathematical Sciences & mathematics Education                           21 

Enhancing the Massey-Omura Cryptosystem 
 

Richard Winton, Ph.D. † 
 

Abstract 
 
 The Massey-Omura Cryptosystem is a well known private key system. 
Although it is well designed and educational to study, the system has 
characteristics which make it vulnerable to cryptanalysis. In particular, the 
traditional Massey-Omura system is an exponential system which uses a prime 
modulus. Thus a cryptanalyst who is able to acquire the encryption key and 
modulus can easily calculate the corresponding decryption key and decipher 
intercepted messages. The systems developed in this paper follow the traditional 
Massey-Omura protocol, with two enhancements provided to improve security. 
 The enhanced Massey-Omura system (EMO-1) replaces the prime 
modulus with a composite which is the product of two distinct (large) primes. In 
this manner the system is provided with a level of security similar to that of an 
RSA public key system.  
 A stronger version of the enhanced Massey-Omura system (EMO-2) adds 
a digital signature to the EMO-1 system. The digital signature allows the 
recipient of a message encrypted with EMO-2 protocol to authenticate the 
identity of the sender, providing an additional aspect of security. 
 

Introduction 
 
 Cryptosystems come in a wide variety of forms. One criteria for 
classifying cryptosystems is based on whether or not any of the encryption keys 
are made known to the public. Systems which make such information publicly 
known are referred to as "public key" cryptosystems. Others, which do not 
publish their encryption keys, are known as "private key" cryptosystems. This 
paper offers two generalizations of a known private key system called the 
Massey-Omura cryptosystem [1] whose mathematical basis is Fermat's 
Theorem. 
  

The Massey-Omura Cryptosystem 
 
 The details of the Massey-Omura system construction as well as the 
correspondence protocol are described below. 
 
Establishing the Communication System. In order to establish a Massey-
Omura cryptosystem for a network of correspondents, the key center first 
performs the following functions. 
 
1. An alphabet A is selected. 
2. A maximum message length N is determined.  
 Thus N is the maximum number of characters per message. 
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3. A scheme S is determined to convert alphabetic messages to numerical 
 form and vice versa. 
4. The largest integer L which can represent a message is determined based 
 on the alphabet A, the maximum message length N, and the scheme S. 
5. A prime p > L is selected as the network modulus. 
6. For each member of the network, an integer iw  is selected as an  
 encryption key such that { }1p,wgcd i −  = 1. 

7. For each integer iw , ix = 1
iw− (mod p−1) is computed as a decryption 

 key. The existence of ix  is guaranteed since iw  is an element of the 
 group of units modulo p−1, while the computation of ix  is achieved 
 using the Euclidean Algorithm. 
8. Each network member is provided with their individual encryption and  
 decryption keys iw  and ix , respectively. 
9. The parameters A, N, S, L, and p are published in the center directory.  
 On the other hand, iw  and ix  are private keys, and are thus known only  
 to the key center and the individual network member to whom they are  
 assigned. 
 
Correspondence Protocol. Suppose a network member Bob has keys iw = r 
and ix = t, while network member Sue has keys jw = u and jx = v. For Bob to 
send a message to Sue, the following protocol is observed. 
 
1. Bob constructs his message m using the alphabet A, not to exceed the  
 maximum message length N. 
2. Bob converts his alphabetic message m to its numerical equivalent M ≤ L  
 using the scheme S. 
3. Bob enciphers M by computing rM (mod p) and sends the result to Sue. 
4. Sue further enciphers the transmission by computing  

 ( )( )ur pmodM (mod p) = ruM (mod p) and sends the result back to Bob. 
5. Bob partially deciphers the transmission by computing  

 ( )( )tru pmodM (mod p) = ( )rtuM (mod p). Since t = 1r− (mod p−1), then rt 
 ≡ 1(mod p−1), so that rt = 1 + s(p−1) for some integer s. Therefore 

 ( )rtuM (mod p) = ( ) )1p(s1uM
−+

(mod p) = ( )us1pu MM −⋅ (mod p). 
 However, since M ≤ L < p and p is prime, then  
 gcd{M,p} = 1. Therefore 1pM − ≡ 1(mod p) by Fermat’s Theorem. Hence  

 ( )us1pu MM −⋅ (mod p) ≡ uM (mod p). Bob sends this result to Sue. 
6. Sue completes the deciphering process by computing 

( )( )vu pmodM (mod p) = uvM (mod p) ≡ M (mod p) by the same 
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 reasoning as in step 5 above since v = 1u− (mod p−1). Furthermore, M 
 (mod p) = M since M ≤ L < p. 
7. Sue then converts M back to its alphabetic equivalent m using the scheme 
 S and reads Bob’s message. 
 
 The correspondence protocol of the Massey-Omura Cryptosystem is 
illustrated in Figure I below. 
 

Figure I 
 

 Bob (r,t)   Sue (u,v) 
 ↓ 
 m 
 ↓ 
 M 
 ↓ 
 rM (mod p) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ rM (mod 
p) 
     ↓ 
 ruM (mod p) ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ruM (mod 
p) 
 ↓ 
 rutM (mod p)= uM (mod p) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ uM (mod 
p) 
    ↓ 
    uvM (mod 
p)=M 
    ↓ 
    m 
 

The EMO-1 Cryptosystem 
 
 The EMO-1 cryptosystem, which is also a private key system, is an 
enhancement of the Massey-Omura cryptosystem. The basis for the EMO-1 
cryptosystem is Euler's Theorem, which generalizes the result of Fermat's 
Theorem about prime moduli to include composite moduli as well. The 
enhancement is therefore achieved by replacing the prime modulus p of the 
Massey-Omura system with a positive integer n which is the product of two 
primes, thus improving the security of the system. The details of the system 
construction as well as the correspondence protocol are described below. 
 
Establishing the Communication System. In order to establish an EMO-1 
cryptosystem for a network of correspondents, the key center first performs the 
following functions. 
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1. An alphabet A is selected. 
2. A maximum message length N is determined. 
3. A scheme S is determined to convert alphabetic messages to numerical 
 form and vice versa. 
4. The largest integer L which can represent a message is determined based 
 on the alphabet A, the maximum message length N, and the scheme S. 
5. Distinct primes p > L and q > L are selected. 
6. The network modulus n = pq as well as φ(n) = (p−1)(q−1) are computed. 
7. For each member of the network, an integer iw  is selected as an 
 encryption key such that { })n(,wgcd i φ  = 1. 

8. For each integer iw , ix = 1
iw− (mod φ(n)) is computed as a decryption 

 key.  
9. Each network member is provided with their individual encryption and  
 decryption keys iw  and ix , respectively. 
10. The parameters A, N, S, L, and n are published in the center directory.  
 On the other hand, iw  and ix  are private keys, and are thus known only  
 to the key center and the individual network member to whom they are  
 assigned. 
 
Correspondence Protocol. Suppose a network member Bob has keys iw = r 
and ix = t, while network member Sue has keys jw = u and jx = v. For Bob to 
send a message to Sue, the following protocol is observed. 
 
1. Bob constructs his message m using the alphabet A, not to exceed the  
 maximum message length N. 
2. Bob converts his alphabetic message m to its numerical equivalent M ≤ L  
 using the scheme S. 
3. Bob enciphers M by computing rM (mod n) and sends the result to Sue. 
4. Sue further enciphers the transmission by computing  

 ( )( )ur nmodM (mod n) = ruM (mod n) and sends the result back to Bob. 
5. Bob partially deciphers the transmission by computing  

 ( )( )tru nmodM (mod n) = ( )rtuM (mod n). Since t = 1r− (mod φ(n)), then 
 rt ≡ 1(mod φ(n)), so that rt = 1 + s⋅φ(n) for some integer s. Therefore 

 ( )rtuM (mod n) = ( ) )n(s1uM
φ⋅+

(mod n) = ( )us)n(u MM φ⋅ (mod n). 
 However, since M ≤ L < p, M ≤ L < q, p and q are  
 primes, and n = pq, then gcd{M,n} = 1. Therefore )n(Mφ ≡ 1(mod n) by  

 Euler’s Theorem. Hence ( )us)n(u MM φ⋅ (mod n) ≡ uM (mod n). Bob 
 sends this result to Sue. 
6. Sue completes the deciphering process by computing  
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 ( )( )vu nmodM (mod n) = uvM (mod n) ≡ M (mod n) by the same 

 reasoning as in step 5 above since v = 1u− (mod φ(n)). Furthermore, M 
 (mod n) = M since M ≤ L < n. 
7. Sue then converts M back to its alphabetic equivalent m using the scheme 
 S and reads Bob’s message. 
 
 The correspondence protocol of the EMO-1 Cryptosystem is illustrated in  
 Figure II below. 
 

Figure II 
 

 Bob (r,t)   Sue (u,v) 
 ↓ 
 m 
 ↓ 
 M 
 ↓ 
 rM (mod n) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ rM (mod 
n) 
     ↓ 
 ruM (mod n) ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ruM (mod 
n) 
 ↓ 
 rutM (mod n)= uM (mod n) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ uM (mod 
n) 
    ↓ 
    uvM (mod 
n)=M 
    ↓ 
    m 
 
Observations. Since the prime system modulus p is published in the Massey-
Omura system, then φ(p) = p−1 is readily known to the public. Thus if a network 
member's private encryption key iw  is discovered by an interceptor, then the 
interceptor can easily compute the network member's corresponding key ix = 

1
iw− (mod p−1) for decryption purposes in the same manner as done by the key 

center using the Euclidean Algorithm. 
 However, in the EMO-1 cryptosystem, note that only the key center has 
knowledge of p and q. Therefore, even though n is published, it is difficult for 
others to factor n = pq, and thus to compute φ(n) = (p−1)(q−1), for sufficiently 
large n. Consequently, even if a network member's private encryption key iw  is 
discovered by an unauthorized person, that person cannot use iw  compute the 
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network member's corresponding key ix = 1
iw− (mod φ(n)) for decryption 

purposes. This constitutes an improvement in security over the Massey-Omura 
cryptosystem.  
 

The EMO-2 Cryptosystem 
 
 The EMO-2 cryptosystem is an enhancement of the EMO-1 cryptosystem 
described above. The enhancement is achieved by adding a second layer of 
encryption to each transmission, making cryptanalysis more difficult for those 
who would intercept the message without authorization. Furthermore, the 
system employs a digital signature [4] which enables the recipient of a message 
to verify the identity of the sender, providing still another dimension of security. 
The result is a partially private key, partially public key cryptosystem. More 
specifically, the EMO-2 cryptosystem is a combination of an EMO-1 private key 
system and an RSA public key system [2,3]. The details of the system 
construction as well as the correspondence protocol are described below. 
 
Establishing the Communication System. In order to establish an EMO-2 
cryptosystem for a network of correspondents, the key center first performs the 
following functions. 
 
1. An alphabet A is selected. 
2. A maximum message length N is determined. 
3. A scheme S is determined to convert alphabetic messages to numerical 
 form and vice versa. 
4. The largest integer L which can represent a message is determined based 
 on the alphabet A, the maximum message length N, and the scheme S. 
5. Distinct primes p > L and q > L are selected. 
6. The network modulus n = pq as well as φ(n) = (p−1)(q−1) are computed. 
7. For each member of the network, an integer iw  is selected as a primary 
 encryption key such that { })n(,wgcd i φ  = 1. 

8. For each integer iw , ix = 1
iw− (mod φ(n)) is computed as a primary  

 decryption key.  
9. For each member of the network, an integer iy  is selected as a secondary 
 encryption key such that iy  ≠ iw , iy  ≠ ix , and { })n(,ygcd i φ  = 1. 

10. For each integer iy , iz = 1
iy− (mod φ(n)) is computed as a secondary  

 decryption key. 
11. Each network member is provided with their individual encryption and  
 decryption keys iw , ix , iy , and iz . 
12. The keys { }iy , along with the parameters A, N, S, L, and n, are published  
 in the center directory. On the other hand, iw , ix , and iz  are  private  
 keys, and are thus known only to the key center and the individual 
 network member to whom they are assigned. 
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Correspondence Protocol. Suppose a network member Bob has keys iw = r, 

ix = t, iy = c, and iz = b, while network member Sue has keys jw = u, jx = v, 

jy = e, and jz = d. For Bob to send a message to Sue, the following protocol is 
observed. 
 
1. Bob constructs his message m using the alphabet A, not to exceed the  
 maximum message length N. 
2. Bob converts his alphabetic message m to its numerical equivalent M ≤ L  
 using the scheme S. 
3. Bob enciphers M by computing rM (mod n). 

4. Bob further enciphers M by computing ( )( )er nmodM (mod n) = 

 reM (mod n) and sends the result to Sue. 
5. Sue partially deciphers the transmission by computing  

 ( )dre )n(modM (mod n) = ( )edrM (mod n) = rM (mod n) by Euler’s 

 Theorem as in the EMO-1 cryptosystem since d = 1e− (mod φ(n)). 
6. Sue further enciphers the transmission by computing  

 ( )ur )n(modM (mod n) = ruM (mod n) and sends the result back to Bob. 
7. Bob partially deciphers the transmission by computing  

 ( )tru )n(modM (mod n) = ( )rtuM (mod n) = uM (mod n) by the same  

 reasoning as in step 5 above since t = 1r− (mod φ(n)). 
8. Bob then adds a layer of encryption back by computing  

 ( )eu )n(modM (mod n) = ueM (mod n). 
9. Bob now places the digital signature on the message by computing  

 ( )bue )n(modM (mod n) = uebM (mod n) and sends the result to Sue. 
10. Sue partially deciphers the transmission by computing 

 ( )cueb )n(modM (mod n) = ( )bcueM (mod n) ≡ ueM (mod n) by the same 

 reasoning as in step 5 above since c = 1b− (mod φ(n)). 
11. Sue continues deciphering the transmission by computing  

 ( )due )n(modM (mod n) = ( )eduM (mod n) ≡ uM (mod n) by the same  

 reasoning as in step 5 above since d = 1e− (mod φ(n)). 
12. Sue completes the deciphering process by computing  

 ( )vu )n(modM (mod n) = uvM (mod n) ≡ M(mod n) by the same reasoning 

 as in step 5 above since v = 1u− (mod φ(n)). Furthermore, M(mod n) = M 
 since M ≤ L < n. 
13. Sue then converts M back to its alphabetic equivalent m using the scheme 
 S and reads Bob’s message. 
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 The correspondence protocol of the EMO-2 cryptosystem is illustrated in  
Figure III below. 
 

Figure III 
 
 Bob (r,t,c,b)  Sue (u,v,e,d) 
 ↓ 
 m 
 ↓ 
 M 
 ↓ 
 rM (mod n) 
 ↓ 
 reM (mod n) ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ reM (mod n) 
     ↓ 
     redM (mod 
n)= rM (mod n) 
     ↓ 
 ruM (mod n) ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ruM (mod n) 
 ↓ 
 rutM (mod n)= uM (mod n) 
 ↓ 
 ueM (mod n) 
 ↓ 
 uebM (mod n)  ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→  uebM (mod n) 
     ↓ 
     uebcM (mod 
n)= ueM (mod n) 
     ↓ 
     uedM (mod 
n)= uM (mod n) 
    ↓ 
    uvM (mod n)=M 
    ↓ 
    m 
 
More Observations. It is important to note that, while the sender and receiver 
each have two pairs of encryption and decryption keys, they are used quite 
differently. The primary keys assigned initially (r ant t for Bob; u and v for Sue) 
are used with the Massey-Omura protocol. However, the secondary keys 
assigned (c and b for Bob; e and d for Sue) are used with the RSA protocol. 
 Similar to the EMO-1 cryptosystem, only the key center has knowledge 
of p and q. Therefore, even though n is published, it is difficult for others to 
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factor n = pq, and thus to compute φ(n) = (p−1)(q−1), for sufficiently large n. 
Consequently, even if a network member's private encryption key iw  is 
discovered by an interceptor, the interceptor cannot compute the network 
member's corresponding key ix = 1

iw− (mod φ(n)) for decryption purposes. In 

fact, even with iy  published, the corresponding key iz = 1
iy− (mod φ(n)) cannot 

be computed by an interceptor. 
 However, as mentioned above, a primary security improvement of the 
EMO-2 cryptosystem over the EMO-1 cryptosystem is the double encryption 
provided with each transmission to make cryptanalysis by interceptors more 
difficult. It is noteworthy that the exponentiation performed in step 9 does not 
represent a triple encryption. Since c = 1b− (mod φ(n)) is published, it would be 
relatively simple for an interceptor who understood the system being used to 
remove b by applying the key c. Thus the exponentiation by b provides no real 
additional encryption. Instead, the exponent b serves as the digital signature by 
which Sue can verify Bob's identity as the sender. For if Sue applies Bob's 
public encryption key c and the results (after the rest of the deciphering process) 
yield readable text, then the message must have been encrypted by the sender 
with the exponent b. However, b is Bob's private decryption key, which is 
known only to Bob and the key center. Therefore, unless the key center is 
playing a trick on Sue, the message must have come from Bob. 
 
† Richard Winton, Ph.D., Tarleton State University, Stephenville, TX, USA 
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