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Abstract

An n-valued two-variable truth function is called functionally complete,
if all n-valued functions of m variables can be expressed in terms of the finite
compositions of this function. R. L. Graham, using an indirect proof, proved the
existence of n-valued (n > 3) functionally complete truth functions of two
variables. He found one class of functionally complete functions. In this article,
we will provide a constructive direct proof of Graham's Theorem. Using the
same procedure, we found several more classes of functionally complete
functions. The method and strategy of our proof can be widely used to find more
new types of functionally complete functions.

1 Introduction

It is well known that there exist two and only two functionally complete Sheffer
stroke functions, (—P) A(—Q),and (—P)V (—Q), of 2-valued prepositional

calculus. (i.e. all 2% two-valued truth functions of m variables can be defined
in terms of finite compositions of any one of these two Sheffer stroke functions.
For detailed discussion of this concept, see [2]) R. L. Graham extended the
result to n-valued truth functions. He proved the existence of functionally
complete functions for n >2. First, he proved all n-valued functions of m
variables can be defined in terms of finite compositions of n-valued functions of
two variables. Then, he defined a class of n-valued functions of two variables,
and using an indirect proof, proved all n-valued functions of two variables can
be defined in terms of finite compositions of any one of these functions in the
class. This implies that all n-valued functions of m variables can be defined in
terms of finite compositions of any one of these functions in the class.
Therefore, all functions in this class are functionally complete (cf. [1]).If T(n)
denotes the number of n-valued functionally complete truth functions of two
variables, it is known that 7(2) = 2, T(3) = 3774 (cf. [3, 4]). For n > 3, it is still

unknown. Graham showed there are n!n"z_zn functions in his class. For
example, when n = 3, there are 162 such functions. Comparing with 7(3) =
3774, there should be many other types of functionally complete functions. In
order to find more functionally complete functions, we need to have a method to
examine the completeness directly. In the next section, we will give a direct
constructive proof of the completeness of the Graham's theory. The direct proof
is much easier to understand and can be widely used on proofs of other types of
functionally complete functions.
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2 A New Constructive Proof of Graham's Theorem

In order to compare our proof with Graham’s proof, we will use most of the
same notation as in Graham’s article (cf.[1]). Here are some notations:
I={0,1,...... ,n-1}, wheren> 2.

C = { all n-valued truth functions of two variables from I x I'into I }.

2
C has cardinality n" .

IfF e C, P(F) denote the set of all truth functions of two variables which can be
defined in terms of finite compositions of the 2-variable function F(p,q).

The notation [a,,a,,..., a, | € P(F) implies that the function G (p,q) with the
truth table

[G(0, 0),G(0, 1),-...G(0, n - 1);G(1,0) ......G(n - 1, n-1)] = [2,,2,,...,0 . ]
belongs to P(F).

Let @ be the bijection from {0, 1, ...... ,n } into I x I such that @ ( 1) = (0;
0);, @(2)=(0;1), ...... ,

@ (n*) =(n-1,n-1). So, If @ (k) =(p, q), then a,=G (@ (k)) = G(p,q).

A function F is called functionally complete, if P(F) = C. In other words, F is
functional complete if any truth table [a,,a,,..., a ]in C belongs to P(F).

In order to define a functionally complete function, we introduce two mappings.
Let o and =« be arbitrary fixed mappings of I into I such that for all a € I:

(i) 0<r<n implies c™a) # a ( where c™(a) denotes the r'™ iterate
o(o(..o(a)...)), ”@a) = a. Note that ¢ is just a permutation of I, that
NI

r

consists of a single cycle.
(ii ) There exists r >0 such that 1”(a) = 0.

Now, we define the function from I x I into I:

a(p), if p=gq;
0, ifp=0andq#0;
Fo',ﬂ' (p9 q) = : .
7(p), if p#0andq=0;
any value otherwise;

Abbreviate F . (p,q) by F. Let T, = { t;,t5,....t; } be asubsetof {1,2,...,n%}.
For b; € 1, the notation B, = [by, b, ..., br]T € P(F) will indicate there exists

[a,,a,,...,a ,] € P(F) suchthat a =b, for1 <i<r.
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Graham’s Theorem: The above function F, ; (p,q) is functionally complete. (
i.e. P(Foz) = C orall truth tables [by,b,,...,b ] in C belong to P(F).)

Before proceeding to the proof of the theorem, we prove some lemmas.

Lemmal: Assunme Ty =[t; tp, ...,ts] < { 1,2, ..., n’ }is nonempty,. If [by, by,
s bi ]y € P(F), then [o ™(by), 5 ™(by), ....0 ™(by) ], € P(F) for all m.
k k

Proof: When m=0, [c “(b)), 5 “(b,), ....0 (b) ], =[b1,ba, ..., b ], €
k k
P(F).
If [6 ™(by), 5 ™(by), ....c "(by) ], €P(F),
k
then F([o ™(by), 5 ™(by), ..., (b)) ], [0 “br)s 6 ™ (by), ....0 (b) ], )=
k k

[6 ™V(by), 6 ™ (by), ....c " V(b ], €P(F).

k
By induction, the lemma is true. [
Let Ax (12k <n?) be the statement: For any Ty =[t; t;, ..., k] = { 1,2, ..., n’
}, all truth tables B =[by, by, ..., bk]T € P(F), for arbitrary b; € I, 1 <i<k.

k

If we prove that An2 is true, i.e. all truth tables B=[by, b,, ..., b , ] € P(F), for
n

any bi € I, 1 <i<n? then F is functionally complete. The proof of the
Graham’s theorem will be complete.
Here is the idea of our proof: First, prove A; is true, then prove A, is true, and

finally, by induction, prove A, ..., An2 are true.

First, prove the statement A;:

Forany tie I, let Ty = {t; }. There exists a [EL]T1 € P(F), for example, a=F (p,
qQ), where @ (t))= (p,q).

By Lemma 1, [o(2) ] € P(F), [c®(a) Iy, € P(E), ..., [6"(a) Iy, € P(F).
Since the function & is a single cycle permutation, we proved for any b; € I,
[bi]Tl € P(F). A; has been proved. [

Before we prove the statement A,, we need to prove two lemmas.

Lemma 2: Forany T, = {t, t, }c {1, 2, ..., n’ }, t1 # 1, there exist two
numbers aand b in I, such thata=band [ a, b ]T2 e P(F).

Proof: For any p € I, and q € I, consider these two functions: K(p, q)=F(p, p
)=o(p) € P(F),H(p,q)=F (q,q)=0(q). These two functions are defined in
terms of F. Therefore, they belong to P(F).

Assume @ (t))=(m;,n;)and @ (t,)=(m,,ny). Since t; # t,, we have either m;
#m, Or Ny # ny.
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If m; # m,, then the truth table of K( p, q ) = F( p, p ) on T, will be [c(m;),
o(my) ]Tl € P(F). Since m; # my, we have o(m,) # o(m,).

If n; # n,, then the truth table of H( p, q ) = F( q, q ) on T, will be [o(n)),
o(ny) ]Tl € P(F). Since n; #n, we have o(n)) # o(ny).

Lemma 2 is proved. [

Lemma 3: Forany T,={t,t, }c{1,2,..., n’ }, t1 # tp, There exists ¢ # 0 in [,
and d # 0 in I such that

(i) [c.0]y, P().
(i) [0,d]; €P(F).
(i)  [0,0]y e P(F).

Proof: Assume|[a,b ]T2 e P(F) and a # b. There exist s and t such that 6*)(a) =
0, and (b) = 0. Since a #b, c®(b) = 0, 6(a) # 0. By Lemma 1, [ 6®(a),
") Jr, =10, 0"b) I, € P(F), and [ o“(@), 0b) Iy, = [ (@), 0]y,
P(F). Let ¢ =c"(a), and d = c®(b). (i) and (ii) are proved.
Since there exist ¢ # 0and d #0. [ ¢, 0 ] € P(F)and [0,d ] e P(F).
F(L0.d ], [¢.,0]5) =[0.%(d) Iy, < P(P).
If n(d) = 0, then we have [ 0, 0 ]T2 e P(F). If n(d) %0,
E([0, n(d) ]p,, [c,0 ]y, ) =10, x%(d) ], € P(F).
If 72(d) =0, then [ 0, O]T2 € P(F), otherwise, we will continue the above
procedure to get
F([0, 2”(d) Iy, [¢.0 Iy,) =10, 7%(d) ]y, € P(P),
and so on. Eventually, according to the property of =, there is a number r such
that ©”(d) = 0, and [0, n%(d) ];, =[0, 0], e P(F). (iii) is proved. Therefore

Lemma 3 is true. [
Now, we prove A; is true:
Forany T, = { t;, t, }c { 1,2, ..., 0’ }, by Lemma 3 (iii), [ 0, 0] e P(F). By

Lemma 1, we know that [ (0), 5(0) ]T2 e P(F).
[62(0), 5?(0) Iy, € P(F), ..., [ 6™(0), s"(0) ]y, € P(F).
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By Lemma 3 (i), there exists ¢ € I, such thatc#0and [ c, 0 ]T2 e P(F). By
Lemma 3 (iii), [0, 0]T2 € P(F). Therefore,
F([0.0];,,[c.0];)=[0.0(0) I, < P(F);
F([0.6(0) Iy, . [ 0(0), 5(0) Ir,)= [0,6%(0) I, € P(F);
F(L0.5%(0) Iy, [62(0), ®0) Ir,) = [0.6(0) I, < P(F);

...... N

F([0, 6" 2(0) Iy, . [6"2(0), 6"(0) I,)= [0,5""(0) Iy, € P(F).
According to the property of o, we know that forallb € I, [ 0, b ]Tz e P(F). By

Lemma 1, forany se I, and any b € I,
[ 6¥(0), c®(b) ]T2 € P(F). That is: for any s € I, for any be I, [ 6(0), b ]T2 €

P(F). This implies forany a € Tandb e 1,
[a,b ]T2 e P(F). A; has been proved. [

Now, we prove Ay by induction, for all k where 3 <k <n?:
Assume A, is true for all m <k, where k > 2, we are going to prove that Ay.q is

true. We abbreviate truth table [ by, by, ..., by ]Tk by Bk. and denote [ a®(by),
¥(by), ..., (b 11 _ By c®(By). We will prove that for any By on any set T
={t,ty ..oty }c Teyc {1,2,...,n° }, and any B € I, the truth table [ By,
Bly,, < P(F).

We need to prove some lemmas:

Lemma 4: For any sets Ty = {t;, to, ..., ter1 J< { 1,2, ..., n? }, and any By | =
[by, by, ..., b ]Tkr1 , where Ty = {t, t, ..., t }, there exists an integer s, such
that [ 6¥(By.1), 0,0]; & P(F),

Proof: Since Ay is true, there exist o € I and By € I, such that [ By, a, 0
]Tk+l € P(F) and [ Bi.1, 0, Bo ]Tk+l € P(F). If =0 or By = 0, then Lemma 4 is
true, with s = 0. If not, then o # 0 and By # 0. Consider

F([Bin o0 Jp o [Bin 0.Bo I )=[(Bei).n(a),0 1; e P(F).

If n( o ) = 0, then Lemma 4 is proved with s =1. Otherwise there exists a
number B, € I, such that [ 6( By.y), 0, B, ]Tk+l € P(F). If B; =0, then Lemma 4 is

true, with s = 1. Otherwise, if B, # 0, then
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F( [ 6( Bk-l )9 TC( o )’ 0 ]Tk+1 > [ 6( Bk—1)7 O’ Bl ]TkJr1 ) = [ G(2)( Bk-l )9 n(z)( a )9 0
]Tk+l e P(F).

If ®®( o) = 0, then Lemma 4 is proved with s =2. Otherwise continue the above
procedure. Eventually, there exists an integer s such that either B, = 0, or 19 a

)=0. Therefore, [ 6®( By ), 0, 0 ]Tm € P(F) for some natural number s. [

Lemma 5: For any set Ty = {t;, ta, ..., k1 J< { 1,2, ..., n’ }, and any By | =
[ bl: b29 ceey bk—l ]Tk—l 5 where Tk-l = { tls t29 (KXY} tk—l }C Tk+la lf[ G(S)(Bk-l)9 03 0

I1,., € P(F), then [ 6®"(By.1), 0,0 Ir,., € P(E).

Proof: Let’s discuss the following two cases:
Case 1: There exist a. #0, and B # 0, such that [ 6®( By, ), o, B Iy, € P(F).
Case 2: If Case 1 is not true, then for any o and B, [ 6®( By ), o, B ]Tk+l €
P(F) implies that either oo =0 or = 0.
Proof of Case 1: If there exist o #0, and f # O such that [ G(S)( Bei ), a, B
]TM € P(F), then

F([6®(B),0,0 ] , [6®(Br), o, Bl )=[0"" (B ),0,0 ] e

P(F).

Proof of Case 2: For any a #0, there exists a number [ € I, such that [ 6(5)( By.i
), o, B ]Tm € P(F). Since a #0, B must be 0. Therefore, for all a. =0, [ c®( By
1 ), 0 J; e P(F). Similarly, we have that for all B =0 [ c®( B ), 0, B

]Tk+l € P(F). By choosing some o and B, such that o #0, n( o ) =0 and 3 # 0,

we have that
F([69(Bi1 ), 0,0 ]y, [69(Bei ),0,B ] )=[c"" (B ), 0,0 ] e
P(F). [

Lemma 6: For any By = [ bl, bz, ceey b1 ]Tk-l ,Where T = { t, t, ..., ter }C
Tyer, if [ 6¥(Byy), 0, 0 ]Tk € P(F), for some s € I, then [ By, o, o ]
P(F), foralla € 1.

S
Tk+l

Proof: Since [ 6®/(By.), 0, 0 ]Tk+1 e P(F), by Lemma 5, we have [ a®")(By.,), 0,

0 ]Tk € P(F). Continuously using Lemma 5, we have that [ c*?P(By1), 0, 0
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I € P(F). [6“V(Bir), 0,0 ] € P(F), ..., [ 6" (Biy), 0,0 ], e
P(F). This means [ 6”(By), 0, 0 ]Tm € P(F) forall r.

For any o. = ¢( 0 ), for some t, by the result above, let r = n-t, [6"(By,), 0,
O]Tk € P(F). By Lemma 1, [ ™(B), c(0), cs(‘)(O)]THl € P(F). Therefore, [

By, O, O ]Tm e P(F). [
By Lemma 4, and Lemma 6, we will get Lemma 7 immediately:

Lemma 7: Forany Bi.; =[by, b, ..., b ]Tk,l , and any o € I, we have [ B,

a, o ]Tk+l e P(F).

This implies that if b; = b; for some i #j, then Byy; =[ by, by, ... bj, ... bj, ..., by
]Tm € P(F).

Now, we assume that Ay is true, where k > 2, and we going to prove for any By
= [by, by, ..., b ]Tk ,and any B € I, [ By, B]Tkﬂ € P(F). This implies that Ay,
is true.

Proof: Forany B, = [b;, by, ..., by ]Tk ,and any B =05"(0) e I for some t, If

b; =b; for some i # j, then by Lemma 7, [ By, B]T]Hl e P(F). If all b;’s are

distinct, there exists a number vy, such that [ By, v ]Tk € P(F). Assume that

G(S)( v ) = 0, for some s. Since all b;’s are distinct, there exists some b; # 7.
Without loosing of generality, assume that b, # y. We have By = [ By, by ]Tk ,

and [ Biy, by, 7 ]y, € P). Since 6®(y)=0, by Lemma 1, we have that [c"(
Bi1), 0%(by), ®(y) Ip = [6¥(Bi1), 6®(by), 0]; € P(F). By Lemma 7,
we have [6( By, ), 6®( by ), ®( by ) Ir,., € P(F). Since by # v, and a®(y)=
0, s0, 6¥( by ) #0.

F([6”(Bi1), 69( by ), 05, [6( By ), 6¥(bi), 0®(0) ], )=
[6°™(Bi1), 6 (by), 0] e P(F).

F([o®™(By ), 6°(b), 0]y, [0 By ), 6 (b ), o(0) ] )

=[6"?(By1 ), a*?(bx), 0], € P(F).

F([6"?(Bi1 ), *?(bx), 0]1  ,[6*( Byt ), 6 ?(b), o(0) ] )
=[6""(Be1), "), 0]; e P(F).
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Continue this, we will have [6*( By, ), s?(a ), 0 Iy, , € P(F), for any

number j. Since p =" 0), choose j such that s + j =n —t. We have [c"( By
1),6™(by), 0 ] € P(F), By Lemma 1, we have

[6™( Byt ), 6™(b), 6°(0) ] = [Biw, b Bly  =[ B Bly . € P(F)
Ay 1s proved. [

Therefore, Ay is true, for all k. Especially, Anz is true. This implies that all
truth tables [bpbza---aan] in C belong to P(F). The Graham’s theorem is

proved.
3 More New Classes of Functionally Complete Functions

The following functions are functionally complete. The proofs of completeness
of these functions are similar to the above proof of the Graham’s Theorem,
therefore, we only give the proof of the first function.

1.

o (0), if 6?(0)=p=q=#0;

F,(p.q)= ) | ,
1(P q) {G(max{l,J})(O)’ ifp=a<‘)(0) andq:UO)(O),iij,OSi,an-l;

2. If we change the max { i, j } of the function F; to min { i, j }, we will have
another functionally complete function:

a™(0), if 6?(0)=p=q=0;

E@.qQ={ .. . .
:(p.9) {dm“‘“’”)(O), if p=c?(0)andq=0c"(0),i#j,0<i,j<n-1;

3. If we change the max { i, j } of the function F; to i+j, we will have another
functionally complete function:

. ( )_ O.(i+1) (0)’ if O.(i) (0) =p=q# 0;
3N o ™(0), ifp=c”(0)andq=0c"(0),i#j,0<i,j<n-1;

4. Ifnis prime, and n > 3, the following function is functionally complete.
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o(p), ifp=q;

o(q), if p=0andq#0;
F,(p.q) = . i
o(p), if p#0andq=0;
any value, otherwise;
5.
(i+1) e D)) =y — .
o' (0), if ' (0)=p=q=#0;
(" (0)), if p=0”(0)#0and q=0;
F(pq) = a"(0), if p=0and q=0"(0)=0;
1P o(0),  if p=c(0)andp=qandq=c?(0)0;
o(0), ifq=c(0)andp#qandp=0c?(0)=0;
any value, otherwise;
6.
a0 (0), if ¥ (0)=p=q;
F (p.q)= 7(a?(0)), if p=c®”(0)=0and q=0;
ot a(0), if p=0andq=0"(0)%0;

o™ 0), ifp=c?(0)#0,andq=0c"(0)#0,andp=q;

As an example, we only prove the first function:

Theorem. The function F; is functionally complete, where

E (p.q)= a"(0), if c?(0)=p=q=0;
AL PG 0), ifp=0c?(0)andq=0"(0),i#j,0<i,j<n-1;

We will follow the same procedure as the proof of the Graham’s Theorem:
Lemma 1, A, Lemma 2, Lemma 3, A,, Lemma 4, Lemma 5, Lemma 6, Lemma 7
and Ay.;. All lemmas state exactly the same as lemmas in the last section. If the
proof is also the same, we will not repeat. Abbreviate the function F,(p,q) by F.
Lemma 1: Assunme Ty=[t; t,, ..., ] { 1,2, ..., n’ }is nonempty,. If [by, by,
by ]Tk € P(F), then [o (m)(bl)’ G (m)(bz), ...,0 ('“)(bk) ]Tk € P(F) for all m.

Proof: The same as the proof of Lemma 1 in the last section.
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Let Ax (1< k <n?) be the statement: For any Tu = [t t, ..., ] = { 1,2, ..., n’
}, all truth tables B =[by, by, ..., bk]T € P(F), for arbitrary b; € I, 1 <1<k,
k

Proof of A;: The same as the proof of A; in the last section.

Lemma 2: Forany T, = {t, t, }c {1, 2, ..., n’ }, t1 # 1, there exist two
numbersaandbin I, suchthata#band[a, b ]T2 e P(F).

Proof: The same as the proof of Lemma 2 in the last section.

Lemma 3: Forany T,={t,t, }c{1,2,..., n? }, ty # tp, There exists c # 0 in [,
and d # 0 in I such that

(i) [c.0];, €P(F).
()  [0.d];, eP(F).
(i)  [0,0]y, P(F).

Proof: The proof of case (i) and (iii) are the same as the proof of case (i) and
(i1) of Lemma 3 in the last section. We now prove case (iii):

By case (i) and (ii) of Lemma 3 and Lemma 1, there exist s # n-1 and t # n-1
such that

[6"7(0), s®(0) ], € P(F), and [ "(0), 6™"(0) ], e P(F);
F([6"(0), s"(0) ]1,, [6%0), ""(0) ]1,) = [6""(0), 6" (0) ], e P(F);
By Lemma 1, [0, O]T2 e P(F). O

Proof of A,:

Proof: By Lemma 3 (i), there exists s such that [ 6*(0), 0 ] e P(F). By
Lemma 3 (iii) and Lemma 1, we have [ 6"(0), c"(0) Iy, € P(F), forall 0 <r <
n-1,.
F([6(0), 0], ,[0(0), 5(0) ], ) = [c®(0),, 5(0) ], e P(F);
F([6*(0),, 5(0) ]y, , [ 6?(0), s¥(0) ]1,) = [c™(0), s®(0) ], € P(F);

Since [ 6(0), 0], € P(F), by Lemma 1,[0,5"(0) ],  P(F).
E([0,6"(0) ]y, [5(0), 5(0) ]1,) = [0(0), 6"(0) ]y, € P(F).
By Lemma 1, [¢®(0), 5"(0) ]T2 e P(F).
E([0,5"(0) ]y, [67(0), ®(0) ]y,) = [67(0), s"(0) ], € P(F).
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By Lemma 1, [c(0), c"?(0) ];,  P(F).

E([0,6"(0) ]y, [6"(0), 6"*(0) ]y, ) = [6"*"(0), 6"(0) ]y, € P(F).
By Lemma 1, [c(0), s*"(0) ] € P(F).
Also, we have [6°(0), 5(0) ], e P(F).
Therefore, for any b € I, we have [¢*(0), b ]Tz € P(F). By Lemma 1, for any r,
[6”(5(0)), 6'"(b) ]y, € P(F). Thatis, for any a,bin1, [a,b]; € P(F). Agis
proved. [

Now, we prove Ay for all k by induction, where 3 <k <n?: Assume A, is true
for all m <k, we are going to prove that Ay, is true.

Lemma 4: For any sets Ty 1= {t;, to, ..., ter1 J< { 1,2, ..., n’ }, and any By | =
[ by, by, ..., by ]Tk-l , where Ty ;= {t|, t5, ..., tx| }, there exists an integer s, such
that [ 6¥(By.1), 0,0]; e P(F),

Proof: Since Ay is true, there exist o € I and B € I, such that [ By, o, 6™(0)
Iy, , € P(F)and [ Biy, 6" (0), B 11 € P(F). If a=c""(0) or p =c""(0),

then by Lemma 1,[ o( By ), 0,0 ]Tm € P(F). Lemma 4 is true, and s = 1. If

not, then a. # 6™ (0) and p = c™"(0). Consider
F([Bii, &, 6"(0) ]y, [Bit, ™ 70), B 11 ) =[0(Bi1), 6"(0), 6™

D(0) ]Tk” € P(F).
By Lemma 1,[ 6¥(By, ), 0,0 ]Tk € P(F). Lemma 4 is true,and s =2. [

Lemma 5: For any set Tyyy = {t;, th, ..., kg J< { 1,2, ..., n’ }, and any By | =
[ b17 b27 ceey bk—l ]Tk-l s Where Tk-l = { tla tza ceey tk—l }C Tk+l: lf[ G(S)(Bk—l)’ 09 0

Iy, , € P(E), then [ 6®™(By.1),0,0 ] e P(F).

Proof: Since [ 6®(By1), 0,0 |1 e P(F), by Lemma 1, [ " (By.1), 5™ (0),
c"(0)];, € P(F).
Case 1: There exist a #0, and 3 # 0, such that | G(S)( Bii), o, B ]Tk e P(F).

+1
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Case 2: If Case 1 is not true, then for any o and B, [ c*( By, ), a, B ]Tk+l €

P(F) implies that either o =0 or = 0.
Proof of Case 1: If there exist o #0, and  # 0 such that [ G(S)( Bei ), a, B
]TM € P(F), then

[6“(Bii ), 0" (@), 6" (B) ]y € P(F)
Since o 20, and B = 0, so 6™ V(o ) = ™ P(0), and " (B ) =" 0),
F([o"(Bi1 ), 0™"(0), 0™ (0) ]y, [6°"(Bir ), 0" (a), o™ (B

v )
=[6"(B1 ), 0™"(0), 5" 0)]; e P(F),
By Lemma 1,[ 6*""(B.1), 0,0 ] e P(F).
Proof of Case 2: For any a #0, and P # 0, we have that [ c®( By ), a, 0 ]Tk+l €
P(F), and [ 6®)( By, ), 0, B Iy, € P(B).
By Lemma 1, [ 6 (B, ), s™"(a), s™P(0 )1, € P(F), and [ "By ),

c"(0),6"(B) ]y e P(F).
Since a.#0, and B # 0, so ™ V(a ) = 6™ P(0), and 6™ (B ) = ™ (0),
F([o®(Bii ), 6" (), 0™ (0) ], [6“(Bii ), 6"(0),6" (B

) ]Tk+l )
=[6"(By1 ),0™"(0),6"(0)]; e P(F)
By Lemma 1,[ 6*""(By.1), 0,0 ], e P(F). [

Lemma 6: Forany B, =[by, by, ..., b ]Tk,l ;where Ty = {t;, t, ..., ti1 }C
Tis1, if [ 69(By.y), 0, 0 ]Tk . € P(F), forsome s € I, then [ Byy, o, ]Tk €
P(F), forall o € I.

Proof: The same as the proof of Lemma 6 in the last section. [J

Lemma 7: For any B, =[ by, by, ..., b ]Tk_] , and any o, € I, we have [ B,
oo ] e P(F).

This implies that if b; = b; for some i # j, then By =[ by, by, ... by, ... by, ..., by
Iy, € P(F).

Proof: The same as the proof of Lemma 7 in the last section. []
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Proof of Ay.1:

Proof: We need to prove that for any B, =[ by, ..., b;, ... bj, ..., bk ]Tk , and any

B=0"0) €L [Byp l;_ € P(F). By Lemma 7, if there exist i # j, and b;= b,

where 1 <1i,j <k, then [ By, B ]Tk+l e P(F).

Now, we discuss the case: All b;’s in By are distinct. There exists s such that [

By, c®(0) ] e P(F). By Lemma 1,[ ""(By),c""(0)]; e P(F).

Since all b;’s in By are distinct, there exists a b; in By, such that G("'I'S)( b;) # o™

D(0). By Lemma 7, [ 6™"9(By), c™'(b;) ]Tm e P(F).

F([o™"(By), 6" (0) ] -, [6™ By ), 6™ (b)) ]y )

=[o(By ) 6"(0) ]y, € P(P).

Since all b;’s in By are distinct, there exists a b; in By, such that c™*( b; ) # o™
0). By Lemma 7, [ 6™9( By ), a" (b )17 € P(E).

F(L o™ (By ) 0™ (0) Iy [a™(By )0 (b)]; )

=[0™" (B ), 0"7(0) ]y € P(F).

Continue doing this, we have for any r, [ c”( By ), ™ (0 )]Tk+1 e P(F). We
know that p = “(0). Letr=n-1-t. We have that
[6™(By ),0™"(0)];  €P(F). By Lemma 1, we have [ B, 6(0) ] =
By, B ]Tk+l € P(F). Ay is proved. [

Therefore, by induction, Ay is true for all k. Especially, AnZ is true. The

function F; is functionally complete.
4 Summary

By similar methods, we can prove that other classes of functions Fy, Fs, ...... , Fs
are functionally complete. The completeness of many classes of functions with
the permutation function ¢ can be examined in this way: A;, A,, then by
induction Anz . If a function

F( p, q ) is functionally complete, then either this function satisfies the property
F (p, p) = o (p) for some permutation o, or some composition of function F ( p,
q ) satisfies this property. Therefore, finding more classes of functionally
complete functions with function G is very important in the research of finding

all functionally complete functions in the space C.
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