
 

Journal of Mathematical Sciences & Mathematics Education                           1   

A New Constructive Proof of Graham's Theorem and 
More New Classes of Functionally Complete Functions 

 
Anzhou Yang, Ph.D. † 

Zhu-qi Lu, Ph.D. ‡ 
 

Abstract 
 

An n-valued two-variable truth function is called functionally complete, 
if all n-valued functions of m variables can be expressed in terms of the finite 
compositions of this function. R. L. Graham, using an indirect proof, proved the 
existence of n-valued (n > 3) functionally complete truth functions of two 
variables. He found one class of functionally complete functions. In this article, 
we will provide a constructive direct proof of Graham's Theorem. Using the 
same procedure, we found several more classes of functionally complete 
functions. The method and strategy of our proof can be widely used to find more 
new types of functionally complete functions. 
 
1 Introduction 
 
It is well known that there exist two and only two functionally complete Sheffer 
stroke functions, (¬P)∧ (¬Q),and (¬P)∨  (¬Q), of 2-valued prepositional 

calculus. (i.e. all 
m22  two-valued truth functions of m variables can be defined 

in terms of finite compositions of any one of these two Sheffer stroke functions. 
For detailed discussion of this concept, see [2]) R. L. Graham extended the 
result to n-valued truth functions. He proved the existence of functionally 
complete functions for n ≥2. First, he proved all n-valued functions of m 
variables can be defined in terms of finite compositions of n-valued functions of 
two variables. Then, he defined a class of n-valued functions of two variables, 
and using an indirect proof, proved all n-valued functions of two variables can 
be defined in terms of finite compositions of any one of these functions in the 
class. This implies that all n-valued functions of m variables can be defined in 
terms of finite compositions of any one of these functions in the class. 
Therefore, all functions in this class are functionally complete (cf. [1]).If T(n) 
denotes the number of n-valued functionally complete truth functions of two 
variables, it is known that T(2) = 2, T(3) = 3774 (cf. [3, 4]). For n > 3, it is still 

unknown. Graham showed there are nnnn 22

! − functions in his class. For 
example, when n = 3, there are 162 such functions. Comparing with T(3) = 
3774, there should be many other types of functionally complete functions. In 
order to find more functionally complete functions, we need to have a method to 
examine the completeness directly. In the next section, we will give a direct 
constructive proof of the completeness of the Graham's theory. The direct proof 
is much easier to understand and can be widely used on proofs of other types of 
functionally complete functions. 
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2 A New Constructive Proof of Graham's Theorem 
 
In order to compare our proof with Graham’s proof, we will use most of the 
same notation as in Graham’s article (cf.[1]).  Here are some notations:   

I = { 0, 1, ……, n-1 }, where n ≥ 2. 
ℂ = { all n-valued truth functions of two variables from I × I into I }.   

ℂ has cardinality 
2nn . 

If F ∈ ℂ, P(F) denote the set of all truth functions of two variables which can be 
defined in terms of  finite compositions of the 2-variable function F(p,q). 
The notation ]a,...,a,a[ 2n21 ∈ P(F) implies that the function G (p,q) with the 
truth table 
[G(0, 0);G(0, 1),…,G(0, n - 1);G(1, 0) ……G(n - 1; n - 1)] = ]a,...,a,a[ 2n21  

belongs to P(F). 
 
Let ω  be the bijection from { 0, 1, ……, n2 } into I × I such that ω ( 1) = (0; 
0); ω (2) = (0; 1), ……, 
ω  (n2) =(n-1,n-1).  So, If ω  (k) = (p, q), then ak = G (ω  (k)) = G(p,q). 
A function F is called functionally complete, if P(F) = ℂ.  In other words, F is 
functional complete if any truth table  ]a,...,a,a[ 2n21 in ℂ belongs to P(F). 
In order to define a functionally complete function, we introduce two mappings.  
Let σ and π be arbitrary fixed mappings of I into I such that for all a ∈ I: 
( i )  0 < r < n  implies σ(r)(a) ≠ a  ( where σ(r)(a) denotes the rth iterate 

)...))a((...(
r
43421
σσσ , σ(0)(a) = a .  Note that σ is just a permutation of I, that 

consists of a single cycle. 
 
( ii ) There exists r >0 such that π(r)(a) = 0. 
 
Now, we define the function from I × I into I: 
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=≠
≠=

=

=

otherwise;any value
0;q and 0p if(p),
0;q and 0p if0,

q;p if(p),

 q)p,(F , π

σ

πσ  

 
Abbreviate Fσ,π (p,q) by F.  Let Tr = { t1,t2,…,tr } be a subset of  { 1, 2, …, n2 }. 
For bi ∈ I, the notation Br = [b1, b2, …, br rT] ∈ P(F) will indicate there exists 

]a,...,a,a[ 2n21  ∈ P(F)  such that it b  a
i
=  for 1 ≤ i ≤ r.   
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Graham’s Theorem:  The above function Fσ,π (p,q) is functionally complete.  ( 
i.e. P(Fσ,π) = ℂ  or all truth tables ]b,...,b,b[ 2n21  in ℂ belong to P(F). ) 
 
Before proceeding to the proof of the theorem, we prove some lemmas. 
   
Lemma 1:  Assunme Tk = [t1, t2, …, tk] ⊂ { 1, 2, …, n2 }is nonempty,. If [b1, b2, 
…, bk

kT] ∈ P(F), then  [σ (m)(b1), σ (m)(b2), …,σ (m)(bk)
kT] ∈ P(F) for all m. 

 
Proof:  When m = 0, [σ (0)(b1), σ (0)(b2), …,σ (0)(bk)

kT] = [b1, b2, …, bk
kT] ∈ 

P(F).   
If [σ (m)(b1), σ (m)(b2), …,σ (m)(bk)

kT] ∈ P(F), 

then F([σ (m)(b1), σ (m)(b2), …,σ (m)(bk)
kT] , [σ (m)(b1), σ (m)(b2), …,σ (m)(bk)

kT] ) = 

[σ (m+1)(b1), σ (m+1)(b2), …,σ (m+1)(bk)
kT] ∈ P(F).   

By induction, the lemma is true.  � 
Let Ak (1≤ k ≤n2) be the statement:  For any Tk = [t1, t2, …, tk] ⊂ { 1, 2, …, n2 
},  all truth tables B = [b1, b2, …, bk

kT] ∈ P(F), for arbitrary bi ∈ I, 1 ≤ i ≤ k. 

If we prove that A
n2  is true, i.e. all truth tables B = [b1, b2, …, 2n

b ] ∈ P(F), for 

any bi ∈ I, 1 ≤ i ≤ n2,  then F is functionally complete.  The proof of the 
Graham’s theorem will be complete. 
Here is the idea of our proof:  First, prove A1 is true, then prove A2 is true, and 
finally, by induction, prove A3, …, A

n2  are true. 
First, prove the statement A1:   
For any t1∈ I, let T1 = { t1 }.  There exists a 

1T[a]  ∈ P(F), for example, a = F (p, 
q), where ω  (t1)= (p,q).   
By Lemma 1, [σ(a)

1T]  ∈ P(F),  [σ(2)(a) 
1T] ∈ P(F), …, [σ(n-1)(a) 

1T] ∈ P(F).  

Since the function σ is a single cycle permutation, we proved for any bi ∈ I,  
[bi 1T] ∈ P(F).  A1 has been proved.  � 
 
Before we prove the statement A2, we need to prove two lemmas. 
 
Lemma 2:  For any T2 = { t1, t2 }⊂ { 1, 2, …, n2 }, t1 ≠ t2, there exist two 
numbers a and b in I, such that a ≠ b and [ a, b

2T]  ∈ P(F). 

Proof:  For any p ∈ I, and q ∈ I, consider these two functions: K( p, q ) = F( p, p 
) = σ(p) ∈ P(F), H( p, q ) = F ( q , q ) = σ(q).  These two functions are defined in 
terms of F.  Therefore, they belong to P(F). 
Assume ω  (t1)= ( m1 ,n1 ) and ω  (t2)= ( m2 ,n2 ).  Since t1 ≠ t2, we have either m1 
≠ m2 or n1 ≠ n2. 
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If m1 ≠ m2, then the truth table of K( p, q ) = F( p, p ) on T2 will be [σ(m1), 
σ(m2) 1T] ∈ P(F).  Since m1 ≠ m2,   we have σ(m1) ≠ σ(m2). 

If n1 ≠ n2, then the truth table of H( p, q ) = F( q, q ) on T2 will be [σ(n1), 
σ(n2) 1T] ∈ P(F).  Since n1 ≠ n2,  we have σ(n1) ≠ σ(n2). 

Lemma 2 is proved.  � 
 
Lemma 3:   For any T2 ={ t1, t2 }⊂ { 1, 2, …, n2 }, t1 ≠ t2, There exists c ≠ 0 in I, 
and d ≠ 0 in I such that   

(i)     [ c, 0
2T]  ∈ P(F). 

(ii)   [ 0, d
2T]  ∈ P(F). 

(iii) [ 0, 0
2T]  ∈ P(F). 

 
Proof:  Assume [ a, b

2T]  ∈ P(F) and a ≠ b. There exist s and t such that σ(s)(a) = 

0, and σ(t)(b) = 0.  Since a ≠ b,  σ(s)(b) ≠ 0, σ(t)(a) ≠ 0.  By Lemma 1, [ σ(s)(a), 
σ(s)(b) 

2T]  = [ 0, σ(s)(b) 
2T] ∈ P(F),  and [ σ(t)(a), σ(t)(b) 

2T] = [ σ(t)(a), 0
2T] ∈ 

P(F).  Let c = σ(t)(a), and d = σ(s)(b).  (i) and (ii) are proved.   
Since there exist c ≠ 0and d ≠0. [ c, 0 

2T] ∈ P(F) and [ 0 , d
2T] ∈ P(F).  

F([ 0, d 
2T] , [ c , 0

2T] ) = [0, π(d) 
2T] ∈ P(F).   

If π(d) = 0, then we have [ 0, 0
2T] ∈ P(F).  If π(d) ≠ 0, 

F([0, π(d) 
2T] ,  [c , 0 

2T] ) = [0, π(2)(d) 
2T]  ∈ P(F).   

If  π(2)(d) = 0, then [ 0, 0
2T] ∈ P(F), otherwise, we will continue the above 

procedure to get  
F([0, π(2)(d) 

2T] ,  [ c , 0 
2T] ) = [0, π(3)(d) 

2T] ∈ P(F),  

and so on.  Eventually, according to the property of π, there is a number r such 
that π(r)(d) = 0, and [0, π(r)(d)

2T]  = [ 0, 0
2T] ∈ P(F).  (iii) is proved.  Therefore 

Lemma 3 is true.  � 
 
Now, we prove A2 is true:   
 
For any T2 = { t1, t2 }⊂ { 1, 2, …, n2 }, by Lemma 3 (iii), [ 0, 0

2T] ∈ P(F).  By 

Lemma 1, we know that [ σ(0), σ(0) 
2T] ∈ P(F).   

[ σ(2)(0), σ(2)(0) 
2T] ∈ P(F), …, [ σ(n-1)(0), σ(n-1)(0) 

2T] ∈ P(F).   
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By Lemma 3 (i), there exists c ∈ I, such that c ≠ 0 and [ c, 0
2T] ∈ P(F).  By 

Lemma 3 (iii),  [ 0, 0
2T] ∈ P(F).  Therefore,  

F( [ 0, 0
2T] , [ c, 0

2T] ) =  [ 0, σ(0) 
2T]  ∈ P(F);   

F([ 0, σ(0) 
2T] , [ σ(0), σ(0) 

2T] ) =  [ 0, σ(2)(0) 
2T] ∈ P(F);    

F([ 0, σ(2)(0) 
2T] ,  [ σ(2)(0), σ(2)(0) 

2T] ) =  [ 0, σ(3)(0) 
2T] ∈ P(F);  

 ……;   
F([ 0, σ(n-2)(0) 

2T] ,  [ σ(n-2)(0), σ(n-2)(0) 
2T] ) =  [ 0, σ(n-1)(0) 

2T] ∈ P(F).   

According to the property of σ, we know that for all b ∈ I, [ 0, b
2T] ∈ P(F).  By 

Lemma 1, for any s∈ I, and any b ∈ I,   
[ σ(s)(0), σ(s)(b)

2T] ∈ P(F).  That is: for any s ∈ I, for any b∈ I, [ σ(s)(0), b
2T] ∈ 

P(F).  This implies for any a ∈ I and b ∈ I,  
[ a, b

2T] ∈ P(F).  A2 has been proved.  � 
 
Now, we prove Ak by induction, for all k where 3 ≤ k ≤ n2 : 
Assume Am is true for all m ≤ k, where k ≥ 2, we are going to prove that Ak+1 is 
true.  We abbreviate truth table [ b1, b2, …, bk 

kT] by BK.  and denote [ σ(s)(b1), 

σ(s)(b2), …,σ(s)(bk)
kT]  By σ(s)(Bk).  We will prove that for any Bk on any set Tk 

= { t1, t2, …, tk }⊂ Tk+1 ⊂ { 1, 2, …, n2 }, and any β ∈ I, the truth table [ Bk,  
β

1kT] +
∈ P(F).   

 
We need to prove some lemmas: 
 
Lemma 4:  For any sets Tk+1 = { t1, t2, …, tk+1 }⊂ { 1, 2, …, n2 }, and any Bk-1 =  
[ b1, b2, …, bk-1

1-kT] , where Tk-1 = { t1, t2, …, tk-1 }, there exists an integer s, such 

that [ σ(s)(Bk-1), 0, 0
1kT]

+
∈ P(F).  

Proof:  Since Ak is true, there exist α ∈ I and β0 ∈ I, such that [ Bk-1, α, 0 

1kT]
+
∈ P(F) and [ Bk-1, 0, β0 1kT]

+
∈ P(F).  If α = 0 or β0 = 0, then Lemma 4 is 

true, with s = 0.  If not, then α ≠ 0 and β0 ≠ 0.  Consider  
F( [ Bk-1, α, 0 

1kT]
+

, [ Bk-1, 0, β0 1kT]
+

 ) = [ σ( Bk-1 ), π( α ), 0 
1kT]

+
 ∈ P(F).   

If π( α ) = 0, then Lemma 4 is proved with s =1.  Otherwise there exists a 
number β1∈ I, such that [ σ( Bk-1), 0, β1 1kT]

+
 ∈ P(F).  If β1 = 0, then Lemma 4 is 

true, with s = 1.  Otherwise, if β1  ≠ 0, then  
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F( [ σ( Bk-1 ), π( α ), 0 
1kT]

+
,  [ σ( Bk-1), 0, β1 1kT]

+
) =  [ σ(2)( Bk-1 ), π(2)( α ), 0 

1kT]
+
∈ P(F).   

If π(2)( α ) = 0, then Lemma 4 is proved with s =2.  Otherwise continue the above 
procedure.  Eventually, there exists an integer s such that either βs = 0, or π(s)( α 
) = 0.  Therefore, [ σ(s)( Bk-1 ), 0, 0 

1kT]
+
∈ P(F) for some natural number s.  � 

Lemma 5:  For any set Tk+1 = { t1, t2, …, tk+1 }⊂ { 1, 2, …, n2 }, and any Bk-1 =  
[ b1, b2, …, bk-1 1-kT] , where Tk-1 = { t1, t2, …, tk-1 }⊂ Tk+1,  if [ σ(s)(Bk-1), 0, 0 

1kT]
+
∈ P(F),  then [ σ(s+1)(Bk-1), 0, 0 

1kT]
+
∈ P(F). 

 
Proof:  Let’s discuss the following two cases:   
Case 1:  There exist α ≠0, and β ≠ 0, such that [ σ(s)( Bk-1 ), α, β 

1kT]
+
∈ P(F).  

Case 2:  If Case 1 is not true, then for any α and β, [ σ(s)( Bk-1  ), α, β 
1kT]

+
∈ 

P(F) implies that either α = 0 or β = 0. 
Proof of Case 1:  If there exist α ≠0, and β ≠ 0 such that [ σ(s)( Bk-1  ), α, β 

1kT]
+
∈ P(F), then  

F( [ σ(s)(B), 0, 0 
1kT]

+
,  [ σ(s)( Bk-1), α, β 

1kT]
+

) = [ σ(s+1)( Bk-1  ), 0, 0 
1kT]

+
∈ 

P(F). 
Proof of Case 2:  For any α ≠0, there exists a number β ∈ I, such that [ σ(s)( Bk-1  
), α, β 

1kT]
+
∈ P(F).  Since α ≠0,  β must be 0.  Therefore, for all α ≠0, [ σ(s)( Bk-

1  ), α, 0 
1kT]

+
∈ P(F).  Similarly, we have that for all β ≠0 [ σ(s)( Bk-1  ), 0, β 

1kT]
+
∈ P(F).  By choosing some α and β, such that α ≠0, π( α ) = 0 and β ≠ 0, 

we have that  
F( [ σ(s)( Bk-1  ), α, 0 

1kT]
+

,  [ σ(s)( Bk-1  ), 0, β 
1kT]

+
) = [ σ(s+1)( Bk-1  ), 0, 0 

1kT]
+
∈ 

P(F).  � 
 
Lemma 6:  For any Bk-1 = [ b1, b2, …, bk-1 1-kT] ,where Tk-1 = { t1, t2, …, tk-1 }⊂ 

Tk+1,  if [ σ(s)(Bk-1), 0, 0 
1kT]

+
∈ P(F), for some s ∈ I,  then [ Bk-1, α, α 

1kT]
+
∈ 

P(F), for all α ∈ I. 
. 
Proof:  Since [ σ(s)(Bk-1), 0, 0

1kT]
+
∈ P(F), by Lemma 5, we have [ σ(s+1)(Bk-1),  0,  

0 
1kT]

+
∈ P(F).  Continuously using Lemma 5, we have that [ σ(s+2)(Bk-1), 0, 0 
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1kT]
+
∈ P(F).  [ σ(s+3)(Bk-1), 0, 0 

1kT]
+
∈ P(F), ……, [ σ(s+n-1)(Bk-1), 0, 0 

1kT]
+
∈ 

P(F).  This means [ σ(r)(Bk-1), 0, 0
1kT]

+
∈ P(F) for all r.   

For any α = σ(t)( 0 ),  for some t, by the result above, let r = n-t, [σ(n-t)(Bk-1), 0, 
0

1kT]
+
∈ P(F).  By Lemma 1,  [ σ(n)(B), σ(t)( 0 ), σ(t)(0)

1kT]
+
∈ P(F).  Therefore, [ 

Bk-1, α, α 
1kT]

+
∈ P(F).  � 

 
By Lemma 4, and Lemma 6, we will get Lemma 7 immediately: 
 
Lemma 7:  For any Bk-1 = [ b1, b2, …, bk-1 1-kT] ,  and any α ∈ I,  we have [ Bk-1, 

α, α 
1kT]

+
∈ P(F). 

 
This implies that if bi = bj for some i ≠ j, then  Bk+1 = [ b1, b2, … bi, ... bj, …, bk+1 

1kT]
+
∈ P(F). 

 
Now, we assume that Ak is true, where k ≥ 2, and we going to prove for any Bk 
=  [ b1, b2, …, bk kT] , and any β ∈ I, [ Bk,  β 1kT]

+
∈ P(F).  This implies that Ak+1 

is true.  
Proof:  For any Bk =  [ b1, b2, …, bk kT] , and any β = σ(t)( 0 ) ∈ I for some t, If  

bi =bj,  for some i ≠ j,  then by Lemma 7, [ Bk,  β
1kT]

+
∈ P(F). If all bi’s are 

distinct, there exists a number γ, such that [ Bk,  γ 1kT]
+
∈ P(F).  Assume that 

σ(s)( γ ) = 0, for some s. Since all bi’s are distinct, there exists some bi ≠ γ.  
Without loosing of generality, assume that bk ≠ γ.  We have Bk = [ Bk, bk kT] , 

and [ Bk-1, bk,  γ 
1kT]

+
∈ P).  Since σ(s)( γ ) = 0,  by Lemma 1,  we have that  [σ(s)( 

Bk-1 ), σ(s)( bk ), σ(s)( γ ) 
1kT]

+
=  [σ(s)(Bk-1), σ(s)( bk ), 0 1kT]

+
∈ P(F).  By Lemma 7, 

we have [σ(s)( Bk-1 ), σ(s)( bk ), σ(s)( bk ) 1kT]
+
∈ P(F).  Since bk ≠ γ, and σ(s)( γ ) = 

0, so, σ(s)( bk ) ≠ 0. 
F([σ(s)( Bk-1 ), σ(s)( bk ), 0 1kT]

+
, [σ(s)( Bk-1 ), σ(s)( bk ), σ(s)( 0 )

1kT]
+

) = 

[σ(s+1)( Bk-1 ), σ(s+1)( bk ), 0 1kT]
+
∈ P(F). 

F([σ(s+1)( Bk-1 ), σ(s+1)( bk ), 0 1kT]
+

, [σ(s+1)( Bk-1 ), σ(s+1)( bk ), σ( 0 )
1kT]

+
) 

= [σ(s+2)( Bk-1 ), σ(s+2)( bk ), 0 1kT]
+
∈ P(F). 

F([σ(s+2)( Bk-1 ), σ(s+2)( bk ), 0 1kT]
+

,[σ(s+2)( Bk-1 ), σ(s+2)( bk), σ( 0 )
1kT]

+
) 

= [σ(s+3)( Bk-1 ), σ(s+3)( α ), 0
1kT]

+
∈ P(F). 

……, 
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Continue this, we will have [σ(s+j)( Bk-1 ), σ(s+j)( α ), 0 

1kT]
+
∈ P(F), for any 

number j.  Since β = σ(t)( 0 ), choose j such that s + j = n – t.  We have [σ(n-t)( Bk-

1 ), σ(n-t)( bk ), 0 
1kT]

+
∈ P(F),  By Lemma 1,  we have  

[σ(n)( Bk-1 ), σ(n)( bk), σ(t)( 0 )
1kT]

+
=  [ Bk-1, bk,  β 1kT]

+
= [ Bk,  β 1kT]

+
∈ P(F) 

 Ak+1 is proved.  �   
 
Therefore, Ak is true, for all k.  Especially, A

n2  is true.  This implies that all 

truth tables ]b,...,b,b[ 2n21  in ℂ belong to P(F). The Graham’s theorem is 
proved.  
 
 3 More New Classes of Functionally Complete Functions 
 
The following functions are functionally complete.  The proofs of completeness 
of these functions are similar to the above proof of the Graham’s Theorem, 
therefore, we only give the proof of the first function.   
1. 

 

⎩
⎨
⎧

≤≤≠==
≠==

=
+

1;-n j i, 0 j, i ),0(q and )0(p if),0(
0;qp)0( if),0(

 q)p,(F
(j)(i)j})(max{i,

(i))1(i

1 σσσ
σσ

 
 

2. If we change the max { i, j } of the function F1 to min { i, j }, we will have 
another functionally complete function: 
  

⎩
⎨
⎧

≤≤≠==
≠==

=
+

1;-n j i, 0 j, i ),0(q and )0(p if),0(
0;qp)0( if),0(

 q)p,(F
(j)(i)j})(min{i,

(i))1(i

2 σσσ
σσ

 
 

3.  If we change the max { i, j } of the function F1 to i+j, we will have another 
functionally complete function: 
  

⎩
⎨
⎧

≤≤≠==
≠==

=
+

+

1;-n j i, 0 j, i ),0(q and )0(p if),0(
0;qp)0( if),0(

 q)p,(F
(j)(i)j)(i

(i))1(i

3 σσσ
σσ

 
 
4.   If n is prime, and n ≥ 3, the following function is functionally complete. 
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5.   

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠=≠=
≠=≠=

≠==
=≠=

≠==

=
+

+

otherwise;any value,
;0)0( p and q  p and (0)  q if),0(
;0)0(  q and q  p and (0)  p if),0(

;0)0(  q and 0p if),0(
0;  q and 0  )0(  p if)),0((

0;  q  p  )0( if),0(

 q)p,(F

(i)

(i)

(i)1)(i

(i)(i)

(i)1)(i

5

σσσ
σσσ

σσ
σσπ
σσ

 

 
6. 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠≠=≠=
≠==
=≠=

==

=
+

+

 q;  p and ,0 )0(  q and ,0)0(  p if),0(
0;  )0(  q and 0  p if),0(
0;  q and 0  )0(  p if)),0((

q;  p  )0( if),0(

 q)p,(F

(j)(i)}),(max{

(i)1)(i

(i)(i)

(i)1)(i

6

σσσ
σσ

σσπ
σσ

ji

 
 

As an example, we only prove the first function: 
 
Theorem.  The function F1 is functionally complete, where  
 

⎩
⎨
⎧

≤≤≠==
≠==

=
+

1;-n j i, 0 j, i ),0(q and )0(p if),0(
0;qp)0( if),0(

 q)p,(F (j)(i)j})(max{i,

(i))1(i

1 σσσ
σσ

 
We will follow the same procedure as the proof of the Graham’s Theorem:  
Lemma 1, A1, Lemma 2, Lemma 3, A2, Lemma 4, Lemma 5, Lemma 6, Lemma 7 
and Ak+1.  All lemmas state exactly the same as lemmas in the last section.  If the 
proof is also the same, we will not repeat.  Abbreviate the function F1(p,q) by F. 
Lemma 1:  Assunme Tk = [t1, t2, …, tk] ⊂ { 1, 2, …, n2 }is nonempty,. If [b1, b2, 
…, bk

kT] ∈ P(F), then  [σ (m)(b1), σ (m)(b2), …,σ (m)(bk)
kT] ∈ P(F) for all m. 

 
Proof:  The same as the proof of Lemma 1 in the last section. 
 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=≠
≠=

=

=

otherwise;any value,
0;q and 0p if(p),
0;q and 0p if(q),

q;p if(p),

 q)p,(F4 σ
σ
σ
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Let Ak (1≤ k ≤n2) be the statement:  For any Tk = [t1, t2, …, tk] ⊂ { 1, 2, …, n2 
},  all truth tables B = [b1, b2, …, bk

kT] ∈ P(F), for arbitrary bi ∈ I, 1 ≤ i ≤ k. 
 
Proof of A1:  The same as the proof of A1 in the last section.   
 
Lemma 2:  For any T2 = { t1, t2 }⊂ { 1, 2, …, n2 }, t1 ≠ t2, there exist two 
numbers a and b in I, such that a ≠ b and [ a, b

2T]  ∈ P(F). 
Proof:  The same as the proof of Lemma 2 in the last section. 
 
Lemma 3:   For any T2 ={ t1, t2 }⊂ { 1, 2, …, n2 }, t1 ≠ t2, There exists c ≠ 0 in I, 
and d ≠ 0 in I such that   

(i)     [ c, 0
2T]  ∈ P(F). 

(ii)   [ 0, d
2T]  ∈ P(F). 

(iii) [ 0, 0
2T]  ∈ P(F). 

Proof:  The proof of case (i) and (iii) are the same as the proof of case (i) and 
(ii) of Lemma 3 in the last section.  We now prove case (iii): 
By case (i) and (ii) of Lemma 3 and Lemma 1, there exist s ≠ n-1 and t ≠ n-1 
such that  

[ σ(n-1)(0), σ(s)(0) 
2T]  ∈ P(F),  and [ σ(t)(0), σ(n-1)(0) 

2T] ∈ P(F); 

F([σ(n-1)(0), σ(s)(0) 
2T] ,  [ σ(t)(0), σ(n-1)(0) 

2T] ) =  [σ(n-1)(0), σ(n-1)(0)
2T] ∈ P(F);  

By Lemma 1,  [ 0, 0
2T]  ∈ P(F).    � 

 
Proof of A2:   
 
Proof:  By Lemma 3 (i), there exists s such that [ σ(s)(0), 0 

2T] ∈ P(F). By 

Lemma 3 (iii) and Lemma 1, we have [ σ(r)(0), σ(r)(0) 
2T] ∈ P(F), for all 0 ≤ r ≤ 

n‐1,.   
F( [σ(s)(0),  0

2T] , [σ(0), σ(0)
2T] ) =  [σ(s)(0),, σ(0) 

2T]  ∈ P(F);   

F( [σ(s)(0),, σ(0) 
2T] , [ σ(2)(0), σ(2)(0) 

2T] ) =  [σ(s)(0), σ(2)(0) 
2T] ∈ P(F);    

 …… ;   
F([σ(s)(0), 0 

2T] ,  [ σ(s-1)(0), σ(s-1)(0) 
2T] ) =  [σ(s)(0), σ(s-1)(0) 

2T] ∈ P(F).   

Since [ σ(s)(0), 0
2T] ∈ P(F),  by Lemma 1, [ 0, σ(n-s)(0)

2T] ∈ P(F).   

F( [0, σ(n-s)(0)
2T] ,  [ σ(0), σ(0) 

2T] ) =  [σ(0), σ(n-s)(0) 
2T] ∈ P(F). 

By Lemma 1, [σ(s)(0), σ(n-1)(0) 
2T] ∈ P(F).   

 F( [0, σ(n-s)(0)
2T] ,  [ σ(2)(0), σ(2)(0) 

2T] ) =  [σ(2)(0), σ(n-s)(0) 
2T] ∈ P(F). 
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By Lemma 1, [σ(s)(0), σ(n-2)(0) 
2T] ∈ P(F).   

…… ; 
 

F( [0, σ(n-s)(0)
2T] ,  [ σ(n-s-1)(0), σ(n-s-1)(0) 

2T] ) =  [σ(n-s-1)(0), σ(n-s)(0) 
2T] ∈ P(F). 

By Lemma 1, [σ(s)(0), σ(s+1)(0) 
2T] ∈ P(F).   

Also, we have [σ(s)(0), σ(s)(0) 
2T] ∈ P(F).   

Therefore, for any b ∈ I, we have [σ(s)(0), b
2T] ∈ P(F).  By Lemma 1, for any r, 

[σ(r)( σ(s)(0)), σ(r)(b) 
2T] ∈ P(F).  That is, for any a, b in I, [a, b

2T] ∈ P(F).  A2 is 

proved.   � 
 
Now, we prove Ak for all k by induction, where 3 ≤ k ≤ n2 :  Assume Am is true 
for all m ≤ k, we are going to prove that Ak+1 is true. 
 
Lemma 4:  For any sets Tk+1 = { t1, t2, …, tk+1 }⊂ { 1, 2, …, n2 }, and any Bk-1 =  
[ b1, b2, …, bk-1 1-kT] , where Tk-1 = { t1, t2, …, tk-1 }, there exists an integer s, such 

that [ σ(s)(Bk-1), 0, 0
1kT]

+
∈ P(F).  

Proof:  Since Ak is true, there exist α ∈ I and β ∈ I, such that [ Bk-1, α, σ(n-1)(0) 

1kT]
+
∈ P(F) and [ Bk-1, σ(n-1)(0), β 

1kT]
+
∈ P(F).  If α = σ(n-1)(0) or β = σ(n-1)(0), 

then by Lemma 1, [ σ( Bk-1 ),  0 , 0 
1kT]

+
∈ P(F).  Lemma 4 is true, and s = 1.  If 

not, then α ≠ σ(n-1)(0)  and β ≠ σ(n-1)(0).  Consider  
F( [ Bk-1, α, σ(n-1)(0)  

1kT]
+

, [ Bk-1, σ(n-1)(0), β 
1kT]

+
 ) = [ σ( Bk-1 ), σ(n-1)(0), σ(n-

1)(0)  
1kT]

+
 ∈ P(F).   

By Lemma 1, [ σ(2)( Bk-1 ),  0 , 0 
1kT]

+
∈ P(F).  Lemma 4 is true, and s = 2.    � 

 

Lemma 5:  For any set Tk+1 = { t1, t2, …, tk+1 }⊂ { 1, 2, …, n2 }, and any Bk-1 =  
[ b1, b2, …, bk-1 1-kT] , where Tk-1 = { t1, t2, …, tk-1 }⊂ Tk+1,  if [ σ(s)(Bk-1), 0, 0 

1kT]
+
∈ P(F),  then [ σ(s+1)(Bk-1), 0, 0 

1kT]
+
∈ P(F). 

 
Proof:  Since [ σ(s)(Bk-1), 0, 0 

1kT]
+
∈ P(F), by Lemma 1, [ σ(s-1)(Bk-1), σ(n-1)(0), 

σ(n-1)(0)
1kT]

+
∈ P(F). 

Case 1:  There exist α ≠0, and β ≠ 0, such that [ σ(s)( Bk-1 ), α, β 
1kT]

+
∈ P(F).  
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Case 2:  If Case 1 is not true, then for any α and β, [ σ(s)( Bk-1  ), α, β 
1kT]

+
∈ 

P(F) implies that either α = 0 or β = 0. 
Proof of Case 1:  If there exist α ≠0, and β ≠ 0 such that [ σ(s)( Bk-1  ), α, β 

1kT]
+
∈ P(F), then  

[ σ(s-1)( Bk-1  ), σ(n-1)( α ), σ(n-1)( β )
1kT]

+
∈ P(F) 

Since α ≠0, and β ≠ 0, so σ(n-1)( α ) ≠ σ(n-1)( 0 ), and σ(n-1)( β ) ≠ σ(n-1)( 0 ), 
F([ σ(s-1)( Bk-1  ), σ(n-1)( 0 ), σ(n-1)( 0 )

1kT]
+

,  [ σ(s-1)( Bk-1  ), σ(n-1)( α ), σ(n-1)( β 

)
1kT]

+
)  

= [ σ(s)( Bk-1  ), σ(n-1)( 0 ), σ(n-1)( 0 )
1kT]

+
∈ P(F). 

By Lemma 1, [ σ(s+1)(Bk-1), 0, 0 
1kT]

+
∈ P(F). 

Proof of Case 2:  For any α ≠0, and β ≠ 0, we have that [ σ(s)( Bk-1  ), α, 0 
1kT]

+
∈ 

P(F), and [ σ(s)( Bk-1  ), 0, β 
1kT]

+
∈ P(F).   

By Lemma 1, [ σ(s-1)( Bk-1  ), σ(n-1)( α ), σ(n-1)( 0 )
1kT]

+
 ∈ P(F),  and [ σ(s-1)( Bk-1  ), 

σ(n-1)( 0 ), σ(n-1)( β )
1kT]

+
 ∈ P(F).  

Since α ≠0, and β ≠ 0, so σ(n-1)( α ) ≠ σ(n-1)( 0 ), and σ(n-1)( β ) ≠ σ(n-1)( 0 ), 
F([ σ(s-1)( Bk-1  ), σ(n-1)( α ), σ(n-1)( 0 )

1kT]
+

,  [ σ(s-1)( Bk-1  ), σ(n-1)( 0 ), σ(n-1)( β 

)
1kT]

+
)  

= [ σ(s)( Bk-1  ), σ(n-1)( 0 ), σ(n-1)( 0 )
1kT]

+
∈ P(F). 

By Lemma 1, [ σ(s+1)(Bk-1), 0, 0 
1kT]

+
∈ P(F).       � 

 
Lemma 6:  For any Bk-1 = [ b1, b2, …, bk-1 1-kT] ,where Tk-1 = { t1, t2, …, tk-1 }⊂ 

Tk+1,  if [ σ(s)(Bk-1), 0, 0 
1kT]

+
∈ P(F), for some s ∈ I,  then [ Bk-1, α, α 

1kT]
+
∈ 

P(F), for all α ∈ I. 
. 
Proof:  The same as the proof of Lemma 6 in the last section.  � 
 
Lemma 7:  For any Bk-1 = [ b1, b2, …, bk-1 1-kT] ,  and any α ∈ I,  we have [ Bk-1, 

α, α 
1kT]

+
∈ P(F). 

This implies that if bi = bj for some i ≠ j, then  Bk+1 = [ b1, b2, … bi, ... bj, …, bk+1 

1kT]
+
∈ P(F). 

 
Proof:  The same as the proof of Lemma 7 in the last section.  � 
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Proof of Ak+1: 
 
Proof:  We need to prove that for any Bk = [ b1, …, bi, ... bj, …, bk kT] , and any 

β = σ(t)(0) ∈ I,  [ Bk, β 
1kT]

+
∈ P(F).  By Lemma 7, if there exist i ≠ j, and bi = bj, 

where 1 ≤ i, j ≤ k, then [ Bk, β 
1kT]

+
∈ P(F).   

Now, we discuss the case:  All bi’s in Bk are distinct.  There exists s such that [ 
Bk, σ(s)(0)  

1kT]
+
∈ P(F).  By Lemma 1, [ σ(n-1-s)( Bk ), σ(n-1)( 0 )

1kT]
+
∈ P(F). 

Since all bi’s in Bk are distinct, there exists a bi in Bk, such that σ(n-1-s)( bi ) ≠ σ(n-

1)( 0 ).  By Lemma 7, [ σ(n-1-s)( Bk ), σ(n-1-s)( bi ) 1kT]
+
∈ P(F). 

F([ σ(n-1-s)( Bk ), σ(n-1)( 0 )
1kT]

+
,  [ σ(n-1-s)( Bk  ), σ(n-1-s)( bi ) 1kT]

+
)  

= [ σ(n-s)( Bk  ), σ(n-1)( 0 )
1kT]

+
∈ P(F). 

 
Since all bi’s in Bk are distinct, there exists a bi in Bk, such that σ(n-s)( bi ) ≠ σ(n-1)( 
0 ).  By Lemma 7, [ σ(n-s)( Bk ), σ(n-s)( bi )

1kT]
+
∈ P(F). 

F([ σ(n-s)( Bk ), σ(n-1)( 0 )
1kT]

+
,  [ σ(n-s)( Bk  ), σ(n-s)( bi ) 1kT]

+
)  

= [ σ(n-s+1)( Bk  ), σ(n-1)( 0 )
1kT]

+
∈ P(F). 

Continue doing this, we have for any r, [ σ(r)( Bk  ), σ(n-1)( 0 )
1kT]

+
∈ P(F).  We 

know that β = σ(t)(0).  Let r = n-1-t.  We have that  
[ σ(n-1-t)( Bk  ), σ(n-1)( 0 )

1kT]
+
∈ P(F).  By Lemma 1, we have [ Bk, σ(t)(0)  

1kT]
+

= [ 

Bk, β 
1kT]

+
∈ P(F).  Ak+1 is proved. � 

 
Therefore, by induction, Ak is true for all k.  Especially, 2nA is true.  The 
function F1 is functionally complete. 
 
4 Summary 
 
By similar methods, we can prove that other classes of functions F2, F3, ……, F6 
are functionally complete.  The completeness of many classes of functions with 
the permutation function σ can be examined in this way:  A1,  A2, then by 
induction 2n

A .  If a function  
F( p, q ) is functionally complete, then either this function satisfies the property 
F ( p, p ) = σ (p) for some permutation σ, or some composition of function F ( p, 
q ) satisfies this property.  Therefore, finding more classes of functionally 
complete functions with function σ is very important in the research of finding 
all functionally complete functions in the space ℂ. 
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