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Abstract

Continua are sometimes defined as compact, connected metric spaces. In
this paper we use the more general definition of a continuum as a compact,
connected, Hausdorff topological space. An n-pod is defined to be a
subcontinuum of a topological space whose boundary contains exactly n points,
where n is an integer greater than 1. Preliminary results of general topological
spaces, homogeneous continua, and n-pods are developed to provide access to
the main result. Finally, a symmetry is established among n-pods by verifying
that for each n-pod in a homogeneous continuum, there exists a complementary
n-pod containing the same boundary.

Introduction

In 1980 Forest Wayne Simmons demonstrated the existence of a type of
symmetry in homogeneous continua. More specifically, Simmons showed that
in a homogeneous continuum, each subcontinuum with two point boundary has
a complement whose closure is a subcontinuum with the same boundary [1,
Corollary 2, p. 63]. This paper generalizes Simmon’s corollary by establishing a
similar result for any subcontinuum with finite boundary in a homogeneous
continuum.

Definitions

If H is a subset of a topological space X, then Int(H), CI(H), and Bd(H)
are the topological interior, closure, and boundary of H, respectively. A
continuum is a compact, connected Hausdorff space. A separation AlB of a
space X is a partition of X into nonempty relatively open sets A and B. A subset
S of X separates X if and only if X is connected but X-S is not connected. The
separation number S(X) of a topological space X is the smallest number of
points in X which separates X. If n is an integer greater than 1, then an n-pod of
a space X is a subcontinuum of X whose boundary contains precisely n points.
Furthermore, n is the pod number of X if and only if X contains an n-pod but X
contains no k-pod whenever k is an integer and 1 < k < n. The pod number of X
is denoted by P(X).

Preliminary Results

When the relative complement H—K of connected subsets of a topological
space is not connected, then the union of each component of H-K with K must
be connected. We will need a special case of this result, which is formalized in
the following lemma.
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Lemma 1. Suppose H and K are connected subsets of a topological space X. If
AlBisa separation of H-K, then A U K and B U K are connected.

Proof. If A U K is not connected, then there is a separation U |V of AUK, so
that either K < U or K < V. Without loss of generality, assume that K < U.
DefineS=U U B.

Figure |
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Since K < U, then V n K = &. Therefore Vc A,andsoV nH = J
since A — H. Furthermore, SN H>B nH # Jsince B c H.

Since V c A, then V and B are mutually separated. Hence V and
S are mutually separated, and so V. n H and S n H are mutually separated as
well.

Finally, VUS2oH,sothat (VH)u(SnH)=(VuS)nH=H. Thus
v n H)|(S M H) is a separation of H. This is a contradiction since H is
connected, and so A U K is connected. Similarly, B U K is connected.

The separation of a homogeneous continuum by a finite, minimal
separating set of cardinality n produces a pair of disjoint open subsets of the
space. Furthermore, the union of each of these open subsets with the separating
set is an n-pod whose boundary is the separating set itself. We state this fact in
the following lemma.

Lemma 2. Suppose X is a homogeneous continuum, S(X) = n, and S =
n

x; }i:l c X

If A|Bis a separation of X-S, then A U S and B U S are n-pods in X with

common boundary S.
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Proof. Since no single point can separate the homogeneous continuum X, then
n > 2. Define S, = S—{x,}, so that X—S; is connected since || = n-1 <
S(X). Since A|B is a separation of X-S = (X-S;)-{x,}, then Aulx,} is
connected by Lemma 1. Similarly AU {x;} is connected for 2 <i <n, and so A

U S is connected.

Since B is open in X, then A U S = X-B is a closed subset of the compact
space X. Hence A U S is compact, and is thus a subcontinuum of X.

Finally, BU{x;} is connected for 1 <i < n by an argument similar to that

above for AU{x;}. However, if 1 <i<nand x; ¢ CI(B), then {x;} |Bisa
separation of Bu{xi}, a contradiction. Therefore S < CI(B), and so B U S ¢

CI(B). On the other hand, if p ¢ B U S, then p € A. Since A is open in X, then p
¢ CI(B), and therefore CI(B) < B U S. Thus CI(B) = B u S. Furthermore, since
A U S is closed, then CI(A u S) = A U S. Hence Bd(A U S) =CI(A U S) n
CiIB)=(AuS)yn BuS)=(AnB)uS=S.

Hence A U Sis an n-pod in X with boundary S. Similarly for B U S.

Lemma 2 showed that in a homogeneous continuum, minimal separating
sets induce n-pods in the space. The following result provides a (weak)
converse.

Lemma 3. If H is an n-pod in a connected topological space X, then Bd(H)
separates X.

Proof. Suppose Bd(H) = {x;}!, (n> 1). Therefore H is infinite, and so Int(H) =

H-Bd(H) = &. If X-H = &, then Bd(H) = &, a contradiction. Thus X-H = .
Clearly Int(H) n (X-H) = &. Furthermore, Int(H) u (X—H) = X-Bd(H) since H
is closed.
Hence {Int(H), X—H} is a partition of X-Bd(H).

Clearly Int(H) is open in X—Bd(H). Since H is closed in X, then X—H is
open in X—Bd(H) as well.

Hence Int(H) | (X—H) is a separation of X-Bd(H), and so Bd(H) separates
X.

We now have the results necessary to confirm that the pod number and
separation number in a homogeneous continuum are the same.

Corollary 4. If X is a homogeneous continuum which contains an n-pod for
some integer n > 1, then P(X) = S(X).

Proof. Since no single point can separate the homogeneous continuum X, then

S(X) > 1. Furthermore, since X contains an n-pod whose finite boundary
separates X by Lemma 3, then S(X) < «. Therefore X contains a finite subset S
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such that |S| = S(X) and S separates X. Hence there exists a separation A |B of
X-S, so that AU S and B U S are S(X)-pods by Lemma 2. Thus P(X) < S(X).

Conversely, since X contains a P(X)-pod H, then Bd(H) separates X by
Lemma 3. Therefore S(X) < |Bd(H)|= P(X). Hence P(X) = S(X).

In view of the result in Corollary 4, Lemma 2 may now be reworded,
replacing the separation number S(X) of the homogeneous continuum X with
the pod number P(X).

Corollary 5. Suppose X is a homogeneous continuum, P(X) = n, and S =
{Xi}in:l =X

If AlBis a separation of X-S, then A U S and B U S are n-pods in X with
common boundary S.

Proof. Since P(X) = n, then S(X) = n by Corollary 4. Thus by Lemma 2, AU S
and
B U S are n-pods in X with common boundary S.

We are now prepared to present the main result of this paper, which states
that in a homogeneous continuum, n-pods occur in “complementary pairs”.

Main Theorem

Theorem 6. Suppose X is a homogeneous continuum with P(X) = n. If H is an
n-pod in X, then CI(X-H) is also an n-pod in X. Furthermore, BA[CI(X-H)] =
Bd(H).

Proof. Clearly Int(H) and X—H are open in X. Since H is infinite, then Int(H) =
. Furthermore, if X—H = &, then Bd(H) = &, a contradiction. Thus X-H = &.
Hence Int(H) and X—H are nonempty open sets in X-S.

Furthermore, Int(H) v (X-H) = X-Bd(H) since H is closed. Thus
Int(H) | (X=H) is a separation of X-Bd(H). By Corollary 5, CI(X-H) = (X-H)
w Bd(H) is an n-pod in X with boundary Bd(H).

Figure Il illustrates Theorem 6, where the boundary of H is Bd(H) =
{p.a.r}.
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Figure 11

p

CI(X-H)

Conclusion (and definition)

Suppose H is an n-pod in a homogeneous continuum X with P(X) = n.
Based on Theorem 6, H and CI(X-—H) will be called complementary n-pods in
X.

t Richard Winton, Ph.D., Tarleton State University, USA
References
[1]  Simmons, F.W. (1980). When Homogeneous Continua Are Hausdorff

Circles (or Yes, We Hausdorff Bananas). Continua, Decompositions, and
Manifolds, University of Texas Press 62-73.

Journal of Mathematical Sciences & Mathematics Education 19



