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Abstract 
 

 Continua are sometimes defined as compact, connected metric spaces. In 
this paper we use the more general definition of a continuum as a compact, 
connected, Hausdorff topological space. An n-pod is defined to be a 
subcontinuum of a topological space whose boundary contains exactly n points, 
where n is an integer greater than 1. Preliminary results of general topological 
spaces, homogeneous continua, and n-pods are developed to provide access to 
the main result. Finally, a symmetry is established among n-pods by verifying 
that for each n-pod in a homogeneous continuum, there exists a complementary 
n-pod containing the same boundary. 
 

Introduction 
 
 In 1980 Forest Wayne Simmons demonstrated the existence of a type of 
symmetry in homogeneous continua. More specifically, Simmons showed that 
in a homogeneous continuum, each subcontinuum with two point boundary has 
a complement whose closure is a subcontinuum with the same boundary [1, 
Corollary 2, p. 63]. This paper generalizes Simmon’s corollary by establishing a 
similar result for any subcontinuum with finite boundary in a homogeneous 
continuum. 
 

Definitions 
 
 If H is a subset of a topological space X, then Int(H), Cl(H), and Bd(H) 
are the topological interior, closure, and boundary of H, respectively. A 
continuum is a compact, connected Hausdorff space. A separation A⏐B of a 
space X is a partition of X into nonempty relatively open sets A and B. A subset 
S of X separates X if and only if X is connected but X−S is not connected. The 
separation number S(X) of a topological space X is the smallest number of 
points in X which separates X. If n is an integer greater than 1, then an n-pod of 
a space X is a subcontinuum of X whose boundary contains precisely n points. 
Furthermore, n is the pod number of X if and only if X contains an n-pod but X 
contains no k-pod whenever k is an integer and 1 < k < n. The pod number of X 
is denoted by P(X).  
 

Preliminary Results 
 
 When the relative complement H−K of connected subsets of a topological 
space is not connected, then the union of each component of H−K with K must 
be connected. We will need a special case of this result, which is formalized in 
the following lemma. 
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Lemma 1.  Suppose H and K are connected subsets of a topological space X. If 
A⏐B is a separation of H−K, then A ∪ K and B ∪ K are connected. 
 
Proof.  If A ∪ K is not connected, then there is a separation U⏐V of A ∪ K, so 
that either K ⊆ U or K ⊆ V. Without loss of generality, assume that K ⊆ U. 
Define S = U ∪ B. 
 

Figure I 
 

 
 Since K ⊆ U, then V ∩ K = ∅. Therefore V ⊆ A, and so V ∩ H ≠ ∅ 
since A ⊆ H. Furthermore, S ∩ H ⊇ B ∩ H ≠ ∅ since B ⊆ H. 
 Since V ⊆ A, then V and B are mutually separated. Hence V and  
S are mutually separated, and so V ∩ H and S ∩ H are mutually separated as 
well. 
 Finally, V ∪ S ⊇ H, so that (V ∩ H) ∪ (S ∩ H) = (V ∪ S) ∩ H = H. Thus  
(V ∩ H)⏐(S ∩ H) is a separation of H. This is a contradiction since H is 
connected, and so A ∪ K is connected. Similarly, B ∪ K is connected. 
 
 The separation of a homogeneous continuum by a finite, minimal 
separating set of cardinality n produces a pair of disjoint open subsets of the 
space. Furthermore, the union of each of these open subsets with the separating 
set is an n-pod whose boundary is the separating set itself. We state this fact in 
the following lemma. 
 
Lemma 2.  Suppose X is a homogeneous continuum, S(X) = n, and S = 
{ }n

1iix = ⊆ X.  
If A⏐B is a separation of X−S, then A ∪ S and B ∪ S are n-pods in X with 
common boundary S. 
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Proof.  Since no single point can separate the homogeneous continuum X, then 
n ≥ 2. Define 1S  = { }1xS− , so that 1SX −  is connected since 1S  = n−1 < 
S(X). Since A⏐B is a separation of X−S = ( ) { }11 xSX −− , then { }1xA∪  is 
connected by Lemma 1. Similarly { }ixA∪  is connected for 2 ≤ i ≤ n, and so A 
∪ S is connected. 
 Since B is open in X, then A ∪ S = X−B is a closed subset of the compact 
space X. Hence A ∪ S is compact, and is thus a subcontinuum of X. 
 Finally, { }ixB∪  is connected for 1 ≤ i ≤ n by an argument similar to that 
above for { }ixA∪ . However, if 1 ≤ i ≤ n and ix  ∉ Cl(B), then { }ix ⏐B is a 
separation of { }ixB∪ , a contradiction. Therefore S ⊆ Cl(B), and so B ∪ S ⊆ 
Cl(B). On the other hand, if p ∉ B ∪ S, then p ∈ A. Since A is open in X, then p 
∉ Cl(B), and therefore  Cl(B) ⊆ B ∪ S. Thus Cl(B) = B ∪ S. Furthermore, since 
A ∪ S is closed, then Cl(A ∪ S) = A ∪ S. Hence Bd(A ∪ S) = Cl(A ∪ S) ∩ 
Cl(B) = (A ∪ S) ∩  (B ∪ S) = (A ∩ B) ∪ S = S. 
 Hence A ∪ S is an n-pod in X with boundary S. Similarly for B ∪ S. 
 
 Lemma 2 showed that in a homogeneous continuum, minimal separating 
sets induce n-pods in the space. The following result provides a (weak) 
converse. 
 
Lemma 3.  If H is an n-pod in a connected topological space X, then Bd(H) 
separates X. 
 
Proof.  Suppose Bd(H) = { }n

1iix =  (n > 1). Therefore H is infinite, and so Int(H) = 
H−Bd(H) ≠ ∅. If X−H = ∅, then Bd(H) = ∅, a contradiction. Thus X−H ≠ ∅. 
Clearly Int(H) ∩ (X−H) = ∅. Furthermore, Int(H) ∪ (X−H) = X−Bd(H) since H 
is closed.  
Hence {Int(H), X−H} is a partition of X−Bd(H). 
 Clearly Int(H) is open in X−Bd(H). Since H is closed in X, then X−H is 
open in X−Bd(H) as well. 
 Hence Int(H)⏐(X−H) is a separation of X−Bd(H), and so Bd(H) separates 
X. 
 
 We now have the results necessary to confirm that the pod number and 
separation number in a homogeneous continuum are the same. 
 
Corollary 4.  If X is a homogeneous continuum which contains an n-pod for 
some integer n > 1, then P(X) = S(X). 
 
Proof.  Since no single point can separate the homogeneous continuum X, then 
S(X) > 1. Furthermore, since X contains an n-pod whose finite boundary 
separates X by Lemma 3, then S(X) < ∞. Therefore X contains a finite subset S 
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such that S = S(X) and S separates X. Hence there exists a separation A⏐B of 
X−S, so that A ∪ S and B ∪ S are S(X)-pods by Lemma 2. Thus P(X) ≤ S(X). 
 Conversely, since X contains a P(X)-pod H, then Bd(H) separates X by 
Lemma 3. Therefore S(X) ≤ )H(Bd = P(X). Hence P(X) = S(X). 
 
 In view of the result in Corollary 4, Lemma 2 may now be reworded, 
replacing the separation number S(X) of the homogeneous continuum X with 
the pod number P(X). 
 
Corollary 5.  Suppose X is a homogeneous continuum, P(X) = n, and S = 
{ }n

1iix =  ⊆ X.  
If A⏐B is a separation of X−S, then A ∪ S and B ∪ S are n-pods in X with 
common boundary S. 
 
Proof.  Since P(X) = n, then S(X) = n by Corollary 4. Thus by Lemma 2, A ∪ S 
and  
B ∪ S are n-pods in X with common boundary S. 
 
 We are now prepared to present the main result of this paper, which states 
that in a homogeneous continuum, n-pods occur in “complementary pairs”. 
 

Main Theorem 
 
Theorem 6.  Suppose X is a homogeneous continuum with P(X) = n. If H is an 
n-pod in X, then Cl(X−H) is also an n-pod in X. Furthermore, Bd[Cl(X−H)] = 
Bd(H). 
 
Proof.  Clearly Int(H) and X−H are open in X. Since H is infinite, then Int(H) ≠ 
∅. Furthermore, if X−H = ∅, then Bd(H) = ∅, a contradiction. Thus X−H ≠ ∅. 
Hence Int(H) and X−H are nonempty open sets in X−S. 
 Furthermore, Int(H) ∪ (X−H) = X−Bd(H) since H is closed. Thus 
Int(H)⏐(X−H) is a separation of X−Bd(H). By Corollary 5, Cl(X−H)  = (X−H) 
∪ Bd(H) is an n-pod in X with boundary Bd(H). 
 
 Figure II illustrates Theorem 6, where the boundary of H is Bd(H) = 
{p,q,r}. 
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Figure II 

 
 

Conclusion (and definition) 
 
 Suppose H is an n-pod in a homogeneous continuum X with P(X) = n. 
Based on Theorem 6, H and Cl(X−H) will be called complementary n-pods in 
X. 
 
† Richard Winton, Ph.D., Tarleton State University, USA 
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