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Abstract 

 
Permutation tests for comparing two populations could be widely used 

in practice because of flexibility of the test statistic and minimal assumptions. 
The Wilcoxon sum rank test is more powerful than a t test statistic for moderate 
and large sample sizes for heavier tailed distributions. Using a Resampling Stats, 
this test is easy to implement and a significance level is exact when calculating 
all possible permutations. The approximate significance level can be used when 
the numbers of permutations are very large. 
 

Introduction 
 

Suppose a researcher wants to know whether a new experimental drug 
relieves symptoms attributable to the common cold. The response variable may 
be the time until the cold symptoms go away. If we let μ1 be the mean time until 
cold symptoms go away for individuals who take the drug and μ2 be the mean 
time until symptoms go away for individuals who take placebo, then the 
hypothesis could be H0: μ1 = μ2 and the alternatives could be Ha: μ1 < μ2 or Ha: 
μ1 > μ2 or Ha: μ1 ≠ μ2. The first alternative means that a drug is effective since 
the mean time until cold symptoms go away is less than for individuals who take 
the drug than for those who do not take the drug. In parametric setting, there are 
several assumptions for this test to be valid. First, the two samples come from 
populations with normal density. Second, the samples must be independent. If 
both population variances are known then the test statistics is given by 
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When population variances are unknown but the sample sizes for each 
population are greater than 30 then one usually uses Welch's approximate t 
which is a t test statistics that can be calculated similar to Z test statistics above 
by replacing S1

2 and S2
2 for σ1

2 and σ2
2. Another assumption is when both 

variances are unknown but they are equal. Since the variances are equal and we 
wish to test both population means are equal, then the natural way to estimate 
the variance is to combine the sample, called pooled variance. The pooled 
variance is computed by finding a weighted average of the samples variances, 
i.e, S2

p=(n+m-2)-1 ((n-1)S1
2+(m-1)S2

2). And the test statistic is just replaced Z 
with t and σ1

2 and σ2
2 with S2

p. In practice we do not know whether the 
variances are actually equal, thus usually we have to check this by testing 
equality of the variances using F test statistic. We can imagine that there is no 
guarantee that all assumptions above are satisfied. If these assumptions are not 
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valid then we can still test similar hypothesis with nonparametric test. In the 
literature, there are many different methods for testing equality of two 
populations. In this paper, we will use a permutation method. 
 

Hypothesis Testing for Equal Treatment Effect 
 

 In a nonparametric statistic, there is no parameter to be tested. Let 
F1(x) be the cumulative distribution function (cdf) of population 1 and F2(x) be 
the cdf of population 2. Then the null hypothesis is H0: F1(x) = F2(x). In this case 
the two distributions are identical under null hypothesis. Here it does not say the 
means are equal but the variances are different. When the two treatments are the 
same under the null hypothesis, meaning that the distribution of the observations 
is the same. The alternative hypothesis is given by Ha: F1(x) ≤ F2(x) with at least 
one x for strict inequality. The statement above is the same as Ha: μ1 > μ2 in 
parametric case, since observations for treatment 1 tend to be larger than 
observations for treatment 2. We can also have the alternative hypothesis Ha: 
F1(x) ≥ F2(x). For two sided alternative the alternative hypothesis is Ha: F1(x) ≤ 
F2(x) or, F1(x) ≥ F2(x) with strict inequality for at least one x. 
 

Permutation Test 
 

 Permutation tests also known as randomization tests. It is widely used 
in nonparametric statistics where a parametric form of the underlying 
distribution is not specified. Consider sample of m observations from treatment 
1 and n observations from treatment 2. Assume that under the null hypothesis 
there is no difference between the effect of treatment 1 and treatment 2. Then 
any permutation of the observations between the two treatments has the same 
chance to occur as any other permutation. The steps for a two-treatment 
permutation test: 

• Compute the difference between the mean of observed data, called it 
Dobs. 

• Create a vector of m+n observations. 
• Select at random experimental units to one of the two treatments with 

m units assigned to treatment 1 and n units assigned to treatment 2. 
• Permute the m+n observations between the two treatments so that there 

are m observations for treatment 1 and n observations for treatment 2.  

The number of possibilities are .
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• For small sample sizes, obtain all possible permutations of the 
observations; for large sample sizes, obtain a random sample of 
predetermined, R, permutations. 

• For each permutation of the data, calculate the difference between the 
mean of treatment 1 and mean of treatment 2, called it, D. 
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• For the upper tailed test, compute p-value  as the proportion of D 

greater than or equal  Dobs i.e., 
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• If p-value less than or equal to the predetermined level of significance α 
then we reject H0. 
This permutation test is very flexible. One can choose a test statistic 

suited to the task at hand. Instead of using the difference between means of 
treatment 1 and mean of treatment 2 as a test statistic, one can also use the sum 
of either treatment 1 or 2. If there is an outlier in the data set one can use 
difference between median as a statistic instead of the difference between mean. 
One may also use trimmed mean as a statistic by deleting equal numbers of the 
smallest observations and the largest observations. (Higgins, 2004). 

How to decide which one of the mean, median, or trimmed mean to 
employ? It depends on the knowledge about the population from which data 
come from. In practice, one can use the difference between means when the data 
is approximately normal density; use the difference between medians, if the 
distributions of observations are asymmetric; and if the distribution is symmetric 
with some unusual large and small observations, then one can utilizes a trimmed 
mean as a statistic. These nonparametric methods do not require analytical 
derivation of test statistic under the null hypothesis. Again there is a relaxation 
in choosing the test statistic. With this relaxation, this permutation test has 
advantageous over a parametric test. Permutation tests can be applied to 
continuous, ordinal, or categorical data, to values of normal or non-normal 
density.  Whenever a parametric test works, a permutation test also works. 
These permutation methods have wide range of applications. Permutation 
methods can be applied whenever parametric statistical methods fail (Good, 
1994). 

Now instead of permuting the original observations, one can permute 
the ranks of the observations. Let X1,X2,...,XN (N=n+m) be the combined 
observations. The rank of Xi among the N observations, R(Xi), is R(Xi) = number 
of Xj's ≤  Xi. If no two observations have the same value then let 1 be the rank of 
the smallest observation, 2 be the rank of the next smallest observation, and so 
on. For example, let the observations to be: 6 5 8 9 10; and their ranks are: 2 1 3 
4 5. In case of tie observations, one can adjust the rank. For example the 
observations 3,3,4,5,5,5,5. Their ranks are 1.5, 1.5, 3, 5.5, 5.5, 5.5, 5.5. The first 
two ranks are computed by averaging rank of 1 and 2. If one uses the sum of 
ranks for one treatment the test statistic is called the Wilcoxon rank-sum test, W. 
To calculate a permutation test, combine the m+n ranks. Permute the ranks 
among the two treatments in which m ranks are assigned to treatment 1 and n 
ranks are assigned to treatment 2. For a small sample sizes m and n, obtain all 
possible permutations of the ranks, for large sample size obtain a random sample 
of R permutations. For each permutation of the ranks, compute the sum of the 
ranks, W, for one treatment. The p-value is a fraction of the sum of the ranks for 
one treatment, W, greater than or equal to sum of the observed ranks, Wobs. 
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Properties of the Tests 
 

The only assumption we have is the distribution of treatment 1 under 
the null hypothesis is the same as the distribution of treatment 2. In practice the 
fewer assumptions and limitations, the broader the applications. The question is 
how powerful is this test? Is this test more powerful than the parametric 
counterpart? How robust is the test? That is if there is a violation of the 
underlying distribution how sensitive is it? What are the effects of outliers or 
extreme values, especially for a small sample sizes (Good, 1994). 
In selecting a statistical method, a statistician will pay very close attention to the 
significance level and the power of the test. The significance level of a test, 
denoted by α, is the probability of making type I error, that is, the probability of 
deciding erroneously on the alternative hypothesis when, in fact, the null 
hypothesis is true. Probability of type II error is the probability of failing to 
reject the null hypothesis when, in fact, the null hypothesis is false. The power 
of a test denoted by β, is the complement of probability of type II error, that is, 
the probability of deciding the alternative hypothesis when the alternative 
hypothesis is true. 
We would like the significance level to be very small or close to zero, and the 
power of the test to be very big or close to one. In practice we fix significance 
level, for example, 0.001-.10 and then maximize the power of the test. At the 
same significance level α, a test is said to be a most powerful test if a test, at 
specified significance level, is more powerful against a specific alternative than 
all other tests. A test is said to be a uniformly most powerful test, if a test at 
specified significance level, is more powerful against all alternatives than all 
other tests. In practice, it is unusual to know the distribution of the variable(s) or 
its variance. A test is said to be exact, if probability of making type I error is 
exactly a significance level α. For a test to be exact, a sufficient condition for the 
combined observations can be permuted is exchangeability. The observations 
x1,x2,...,xN are exchangeable if, for example, probability of any particular joint 
outcome, say x1+x5+x7=x, is the same regardless of the order of the observations 
considered. Therefore independent identically distributed, sampling with 
replacement, and a dependent normal with constant variance and constant 
covariance are exchangeable.  
 
Example: Consider the illustration mentioned in section 1. Let the alternative 
hypothesis be the mean time until cold symptoms go away is less than for 
individuals who take the drug than for those who do not take the drug. The 
observations for two treatments are as follows: 
 

Table 1 
Hours until the symptoms go away 

  
Drug Dale (36) Kenneth (60) Mathar (39 
Placebo Butar (37) Honjo (55) Park (70) 
 
The combined samples are 36 39 55 60 70 73. If there is no difference between 
the two treatments one can expect that the total observations for the treatment 1 
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is the same as for the treatment 2. If the total observations for the treatment 1 is 
smaller than for the treatment 2, on the average, then the alternative hypothesis 
is true since less time for the treatment 1 to recover from the cold. 
   

Table 2 
 Permutation distribution of Treatment 1 and Treatment 2 

 

Number Drug 
(Rank) 

Placebo 
(Rank) 

Difference 
Bet. means 

Sum of drug 
(Sum of Ranks) 

Diff bet. 
medians 

1 36 39 55 
(1 2 3) 

60 70 73 
(4 5 6) 

-24.33 130 -31 
(6) 

2* 36 39 60 
(1 2 4) 

55 70 73 
(3 5 6) 

-21.00 135 -31 
(7) 

3 36 39 70 
(1 2 5) 

55 60 73 
(3 4 6) 

-14.33 145 -21 
(8) 

4 36 39 73 
(1 2 6) 

55 60 70 
(3 4 5) 

-12.33 148 -21 
(9) 

5 36 55 60 
(1 3 4) 

39 70 73 
(2 5 6) 

-10.33 151 -15 
(8) 

6 36 55 70 
(1 3 5) 

39 60 73 
(2 5 6) 

-3 67 161 -5 
(9) 

7 36 55 73 
(1 3 6) 

39 60 73 
(2 4 5) 

-1.67 164 -5 
(10) 

8 36 60 70 
(1 4 5) 

39 55 73 
(2 3 6) 

-0.33 166 5 
(10) 

9 36 60 73 
(1 4 6) 

39 55 70 
(2 3 5) 

1 67 169 5 
(11) 

10 36 70 73 
(1 5 6) 

39 55 60 
(2 3 4) 

8.33 179 15 
(12) 

11 39 55 60 
(2 3 4) 

36 70 73 
(1 5 6) 

-8.33 154 -15 
(9) 

12 39 55 70 
(2 3 5) 

36 60 73 
(1 4 6) 

-1.67 164 -5 
(10) 

13 39 55 73 
(2 3 6) 

36 60 70 
(1 4 5) 

0.33 167 -5 
(11) 

14 39 60 70 
(2 4 5) 

36 55 73 
(1 3 6) 

1.67 169 5 
(11) 

15 39 60 73 
(2 4 6 

36 55 70 
(1 3 5) 

3.67 172 5 
(12 

16 39 70 73 
(2 5 6) 

36 55 60 
(1 3 4) 

10.33 182 15 
(13 

17 55 60 70 
(3 4 5) 

36 39 73 
(1 2 6) 

12.33 185 21 
(12) 

18 55 60 73 
(3 4 6) 

36 39 70 
(1 2 5) 

14.33 188 21 
(13 

19 55 70 73 
(3 5 6) 

36 39 60 
(1 2 4) 

21.00 198 31 
(14) 

20 60 70 73 
(4 5 6) 

36 39 55 
(1 2 3) 

24.33 203 31 
(15) 
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In table 2, there are 20 possible two-sample set from the list of permutations 
distribution. The second data set with asterisk from table 2 above is the observed 
data from the example. It has a difference of means of -21. The p-value for the 
lower-tail is the probability of observing a difference of means of -21 or less 
under the assumption that the treatments do not differ. In this case there are only 
two numbers less than or  equal to -21 out of 20 difference means ( that is -21 
and -24.33), therefore its p-value is 2/20 = 0.10. If one uses the sum of the 
treatment 1 (sum of rank of treatment 1) as a statistic, the p-value is the 
proportion of number less than or equal to 135 (7). In this case is 2/20=0.10. 
This p-value is exact since we calculate it from a permutation distribution, hence 
it is the exact significance level, not an approximation.  
  

Testing for Deviances 
  
 The test explained above is design to distinguish between the effects of two 
treatments, whether observations from one treatment tend to be larger than 
observations from another treatment or vice versa. In this section we are 
interested in the variability of the observations for the two treatments. This 
variability is very important in quality control. Even though   the data have the 
correct mean or median, it is possible to have an excessive variability within the 
data. The engineer has to fix this to reduce the variability and the data should be 
closed to the center. Suppose we are testing that there is no variability between 
treatment 1 and treatment 2, or H0: σ1 = σ2. If we assume that both samples 
come from normal distribution then the usual test is F=S1

2/S2
2, which follows an 

F distribution with m-1 and n-1 degrees of freedom. This test is not valid if the 
underlying distribution is not normal. Higgins (2004) suggested to find the 
deviances of each treatment i.e., devi1= Xi – μ1 and devj2= Xj - μ2. The test 

statistic is the ratio of mean deviance (RMD) as .
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 If the means are unknown, then replace the means with the medians of the 
samples. The steps for the permutation test on deviances are similar to the 
permutation test for two treatment effect.  First, compute the test statistic for the 
original observations, then permute (rearrange) the m+n observations between 
treatments so that m observations for treatment 1 and n observations for 
treatment 2. Find the medians for each treatment and estimated deviances then 
compute the statistic from the sample just permuted. Compare this value to the 
value obtained for the observed data. If the computed value from the 
permutation is greater than or equal to the statistic from the original 
observations, then count 1. Repeat permutation and computation for a number of 
times.  If the sample sizes are small obtain all possible permutations and if 
sample sizes are large obtain permutations by randomly selecting from all 
possible permutations. Reject the null hypothesis if the proportion of 1 from the 
above is less than or equal to predetermined significance level. Higgins (2004) 
calculated medians only once from the original observations. He then permuted 
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deviances before calculating statistic, RMD. Our's is different than the Higgins'.  
Before calculating any statistic from a permutation, we permuted the 
observations, and then find medians from the permuted data in order to finally 
calculate deviances and then use a formula RMD above. 
 
Example: This example is from McClave et. al. (1997) textbook page 390. Tests 
of product can be completely automated or they can be conducted using human 
inspectors or human inspectors aided by mechanical devices. Although human 
inspection is frequently the most economical alternative, it can lead to serious 
inspection error problems. To evaluate the performance of inspectors in a new 
company, a quality manager had sample 12 novice inspectors evaluate 200 
finished products.  The same 200 items were evaluated by 12 experienced 
inspectors. The following table lists the number of inspection errors made by 
each inspector. The manager believe that the variability of inspection errors was  
lower for experienced inspectors than for novice inspectors. 
  

Table 3: 
 
 

Novice Inspectors Experienced Inspectors 
30 35 26 40 36 20 31 15 25 19 28 17 
45 31 33 29 21 48 19 18 24 10 20 21 

  
If we calculate all possible permutations then we have 

156,704,2
12
24

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
arrangements. Keller-McNulty and Higgins (1987) concluded 

that there is enough to resample  R=1,600, since nothing to be gained if taking 
sample more than 1600. We use R=1500 in our permutation in order to get an 
approximation of p-value. We use a software Resampling Stats (2000). 
Resampling Stats is a simple, but powerful software language that can solve 
complex problems both in probability and statistics. Since means of the two 
treatments are unknown, we use the sample medians which are 32, and 19.5, 
respectively. Calculate the absolute value of the observed minus the median for 
each treatment. The ratio of median deviance for the original observations 
R M̂ D is 0.6375. The 1st, 2.5th, 5th, 10th, and 20th percentiles of the permutation 
distribution based on 1,000 randomly selected permutations are found to be .5, 
.5471, .5913, .6789 and 0.79104. Thus the statistic is significant at the 10% level 
but not at the 5% level. And the approximate p-value is 0.072. So there is no 
variability of inspection errors for experienced inspectors and novice inspectors.  
The histogram of R M̂ D shown below is the distribution of the ratio of 
deviation of errors by experienced inspectors and novice inspectors.  
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Power Functions of the Tests 
  
In this section we will compare the power of test for Wilcoxon's rank sum test 
with t-distribution using the permutation method under various nonnormal 
distributions. We will consider uniform, exponential, log-normal, Poisson, 
Pareto, and Weibul distributions. We will use small (m=5, n=5), moderate 
(m=n=20) and large sample sizes (m=n=30). The simulation is conducted as 
follows: 1) Two independent samples of size m and n are randomly selected 
from probability distribution above. 2) We add a constant 

 

 
 

to each observation for treatment 1, for example, so that μ1 > μ2. 3) Calculate the 
observed value of t, and the Wilcoxon statistic. 4) Use 1000 resamples of the 
data to determine a p-value of the permutation test. 5) If a p-value less than 0.05 
then reject null hypothesis using a test at the 5 % level. 6) Repeat steps 1-5 for a 
number of times, say 2000. 7) The power is the proportion of times in the 2000 
that are rejected. Again, complete steps 1-7 by increasing the value of a constant 
in step 2 until you get a wide range of power functions. Figure 1-5 are the 
graphs of the power functions. It is been known when the distributions of the 
data are normal with unknown, but equal variances, under a t-test for difference 
between two samples, t is unbiased test. That is, t has the greatest power and 
correct of probability of a Type I error. If the underlying distributions are not 
normal then the power of t is not optimal. 
For our simulation, we compare the Wilcoxon's sum rank test with the t-test. 
Results for small samples (see figure 1-5): t-test is uniformly better than the 
Wilcoxon's rank sum test for uniform, exponential, and Weibull distributions. 
Even though the t-test has advantage over the Wilcoxon's, the difference 
between a power is not significant. There is no clear choice between t-test and 
Wilcoxon's for Lognormal, and Pareto. For Poisson, most of the time the power 
of  the Wilcoxon's is above of t-test except in two points. 
For moderate sample sizes the results are as follows: The uniform is the only 
distribution in which t-test is more powerful than the Wilcoxon's, again the 
difference is not very significant. There is no difference between t-test and the 
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Wilcoxon for Weibull distribution. The Wilcoxon's rank sum test is better than t-
test for exponential, lognormal, Pareto, and Poisson. The Wilcoxon's test 
replaces the original observations by ranks. However, the observations that are 
unusually large compared to the rest of the data can affect the t-test. 
Exponential, lognormal, and Pareto are heavy-tailed distribution that can have 
unusually extreme observations. Whenever the Wilcoxon rank-sum test is 
uniformly better than t-test, the power of the test is very significant. For the 
Pareto, for example, let the difference between the means is .50, then the power 
of Pareto under the Wilcoxon is 86.95% while the power of t-test is 40.70%. 
Results for large samples: Some practitioners mistakenly assumed under central 
limit theorem a power of t-test is uniformly better than the Wilcoxon. However, 
in our simulation only uniform distribution has the edge for t-test, with no 
difference for a Weibull. The Wilcoxon rank sum statistic has bigger power for 
Pareto, lognormal, exponential, and Poisson distributions than that of t-statistic. 
Based on our simulation we conclude that for light-tailed distribution such as 
uniform distribution, the t-test is better than the Wilcoxon's for small, moderate, 
and large samples. For small sample size, symmetric and light-tailed, t-test is 
better most of the times. The Wilcoxon sum rank test is more powerful than t-
test  for moderate and large sample sizes most of the time, when the 
distributions of the data come from heavy-tailed distributions.  
 

Figure I 
One-tailed Power Functions of the Two Independent Mean 
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Figure II 
One-tailed Power Functions of the Two Independent Mean 

 
Figure III 

One-tailed Power Functions of the Two Independent Mean 
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Figure IV 
One-tailed Power Functions of the Two Independent Mean 

 
 

Figure V 
One-tailed Power Functions of the Two Independent Mean 
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