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Abstract

The equation satisfied by the Stokes’ stream function for irrotational
motion and its transformation from cylindrical to elliptic coordinate exist in
literature. In this paper, a different approach to transform this equation from
cylindrical to elliptic coordinates is presented.

Derivation

We know that the equation satisfied by the stream function y for

irrotational motion in cylinderical coordinates is
2 2
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It is required to transform this equation in elliptic coordinates. We transform the
independent variables (z, r) in equation (1) to elliptic coordinates (&, n).
Suppose that z1 and £ are two complex variables defined by

z1=z+ir and § =E&+in
where z, 1, €, | are real variables. Then we can draw two complex planes, one
called the zj—plane
(or z r — plane), the other called the {—plane

(or & n — plane). Suppose that ¢ is related to z; by means of the transformation
€ =1f(z) 2

If f(z1) is a single valued function of zj, then to each point in the z;—
plane, there corresponds one and only one point in the {—plane. In this way, a
curve C (orregion R) inthe z; plane is mapped into a curve c (or region
R') in the {—plane and conversely as shown in the figure.
We can write equation (2)asE+in=f(z+ir)=¢& (z,r) +in (z, r), which
implies
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€ =2C(zr) and n =n(z1) 3)

Equation (3) are called the transformation equations from the z r — plane to the
& 1 —plane.

Since f (z1) is a single—valued function of z1, we can define the inverse

transformation from the

C—plane to zj—plane using equation (2) as

z1=g(0) “4)
orz+ir=g(+in)=z(&,n)+ir (€, n), which gives
z=z(Em) and 1 =r1(E M) ®)

From equation (1), we see that y =y (z, 1) =y [z (§, 1), 1 (€, n)]using equation
(%
By chain—rule, we have
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Substituting equations (7), (8), (9), in equation (1), we get

2
6_\u6é+_é 8\v_§ dy on|,dydm on
ag oz Bnaéaz

P
2
Py ot 2y (_\u_éaa)a_\uaaa_é
[ag n62+an az} ot or on or) aE af or
2 2 2 2
Gyotk, 0y on| dwdn on| 0y 28, 0yon|_,
0& Or 0Omog or on or° Or | 0&dn dr on” Or

dwaon _ (10)

and——+——>23 =0

Also, by Cauchy — Riemann equations, we have

0 _9dn 0& _ dn
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Therefore,
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where { = E+1in
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Because both &, n and their second order partial derivatives are continuous.
Thus equation (10) reduces to
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Since z and r are independent variables, therefore 8_; = 0. Equation (12)

reduces to
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