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Separation in Homogeneous Continua 
 

Richard Winton, Ph.D. † 
 

Abstract 
 
 It is known that homogeneous continua cannot be separated by a single 
point. However, there is no guarantee in general that the subcontinua in such 
spaces have the same property. This paper establishes the fact that, in all but the 
most simple case, the nontrivial subcontinua with minimal finite boundary in a 
homogeneous continuum share the property of the entire space that they cannot 
be separated by a single point.  
 More specifically, if X is a homogeneous continuum, then no single point 
separates X. If the nontrivial subcontinua of X with minimal boundary contain 
precisely two boundary points, then these subcontinua can be separated by a 
single point. However, if these subcontinua have finite boundary containing 
more than two points, then like X itself, they cannot be separated by a single 
point. 

 
Introduction 

 
  Due to some variation throughout the literature, basic definitions and 
notations are presented. Some preliminary results related to homogeneous 
continua and subcontinua with minimal boundary are developed to provide 
access to the main theorems. These results will depend on the work of Simmons 
[9] and Winton [12]. Some of the results of Simmons [9] will also be 
generalized. We begin with basic definitions and notations. 
 

Definitions 
 

 Continua are sometimes defined to be compact, connected metric spaces. 
However, we will adopt the more general approach by defining a continuum to 
be a compact, connected, Hausdorff topological space. If H is a subset of a 
topological space X, then Int(H), Cl(H), and Bd(H) are the topological interior, 
closure, and boundary of H, respectively. A separation A⏐B of a space X is a 
partition of X into nonempty relatively open sets A and B. A subset H of X 
separates X if and only if X is connected but X−H is not connected. In 
particular, a point p∈X is a cut point of X if and only if X is connected but 
X−{p} is not connected. That is, p is a cut point of X if and only if {p} separates 
X. A point p∈X is a noncut point of X if and only if p is not a cut point of X. If 
n is an integer greater than 1, X is a topological space, and H ⊆ X, then H is an 
n-pod of X if and only if H is a subcontinuum of X whose boundary contains 
precisely n points. Furthermore, n is the pod number of X if and only if X 
contains an n-pod but X contains no k-pod whenever k is an integer and 1 < k < 
n. The pod number of X is denoted by P(X). 
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Preliminary Results 
 

Lemma 1. Suppose X is a topological space and A ⊆ B ⊆ C ⊆ X.  
(a) If A is open in C, then A is open in B. 
(b) If A is closed in C, then A is closed in B. 
(c) If A is open in B and B is open in C, then A is open in C. 
(d) If A is closed in B and B is closed in C, then A is closed in C. 
 
Proof.  
(a) Since A is open in C then A = O∩C for some open set O in X. Therefore 
A = A∩B (since A ⊆ B) = (O∩C)∩B = O∩(C∩B) = O∩B (since B ⊆ C). 
Hence A is open in B. 
 
(b) Since A is closed in C then A = F∩C for some closed set F in X. 
Therefore A = A∩B (since A ⊆ B) = (F∩C)∩B = F∩(C∩B) = F∩B (since B ⊆ 
C). Hence A is closed in B. 
 
(c) Since A is open in B then A = O∩B for some open set O in X. Since B is 
open in C then B = V∩C for some open set V in X. Therefore O∩V is open in 
X. Furthermore, A = O∩B = O∩(V∩C) = (O∩V)∩C. Hence A is open in C. 
 
(d) Since A is closed in B then A = F∩B for some closed set F in X. Since B 
is closed in C then B = G∩C for some closed set G in X. Therefore F∩G is 
closed in X. Furthermore, A = F∩B = F∩(G∩C) = (F∩G)∩C. Hence A is 
closed in C. 
 
 It is known that a homogeneous continuum cannot be separated by a 
single point. However, we present this result here since it is closely related to the 
main theorems of the paper. 
 
Theorem 2. If X is a homogeneous continuum, then X cannot be separated by a 
single point. That is, X contains no cut points. 
 
Proof. If X = {p} is a trivial space then X−{p} = ∅. Thus there can be no 
separation of X−{p}, and so p is a noncut point. 
 On the other hand, if X is nontrivial, then X contains at least two noncut 
points p and q [11, p. 205, Theorem 28.8]. If y∈X then there exists a 
homeomorphism f:X→X such that f(p) = y since X is homogeneous. Since p is a 
noncut point of X and f is a homeomorphism, then y is also a noncut point of X. 
Therefore each point in X is a noncut point. 
 Thus in either case X contains no cut points. Hence X cannot be separated 
by a single point. 
 
 Simmons showed that if X is a homogeneous continuum, H is a 2-pod in 
X, p∈X, and A⎪B is a separation of H−{p}, then A and B each contain a point 
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of Bd(H) [9, Lemma 3]. Lemma 3 generalizes this result to include all n-pods in 
X. 
 
Lemma 3. Suppose X is a homogeneous continuum, H is an n-pod in X, p∈X, 
and A⎪B is a separation of H−{p}. Then A and B each contain a point of Bd(H). 
 
Proof.  Suppose A∩Bd(H) = ∅. If p∉H then H−{p} = H. However, H−{p} is 
not connected since A⎪B is a separation of H−{p}, while H is connected. This is 
a contradiction, and so p∈H. 
 Define W = B∪(X−H). We now show that {A,B,X−H} and {A,W} are 
partitions of X−{p}. Clearly A ≠ ∅ and B ≠ ∅ since A⎪B is a separation of 
H−{p}. If X−H = ∅, then H = X. Then A⎪B is a separation of H−{p} = X−{p}, 
so that p is a cut point of X. This contradicts Theorem 2, and so X−H ≠ ∅. Since 
A⎪B is a separation of H−{p}, then A∩B = ∅. Furthermore, A ⊆ H and B ⊆ H, 
so that A∩(X−H) = ∅ = B∩(X−H). Finally, since it was shown above that p∈H, 
then X−{p} = (H−{p})∪(X−H) = A∪B∪(X−H). Thus {A,B,X−H} is a partition 
of X−{p}. Since W = B∪(X−H), then {A,W} is also a partition of X−{p}. 
 To show that A is open in X−{p}, recall that it was shown above that 
A∩(X−H) = ∅. Furthermore, A∩Bd(H) = ∅ by the assumption above. 
Therefore ∅ = ∅ ∪ ∅ = [A∩(X−H)] ∪ [A∩Bd(H)] = A ∩ [(X−H) ∪ Bd(H)] = 
A ∩  [(X−H) ∪ Bd(X−H)] = A∩Cl(X−H) ([8, p. 87, no. 12],[11, p. 28, Theorem 
3.14(a)]), and so A contains no limit points of X−H [10, p. 96, Theorem D(1)]. 
Furthermore, since A⎪B is a separation of H−{p}, then A contains no limit 
points of B. Thus A contains no limit points of B∪(X−H) = W. Since {A,W} is 
a partition of X−{p}, then W must contain its own limit points in X−{p}. Thus 
W is closed in X−{p} [10, p. 96, Theorem D(2)], and so A = (X−{p})−W is 
open in X−{p}. 
 To show that W is open in X−{p}, note that since H is compact and X is 
Hausdorff, then H is closed in X ([1, p. 81, Corollary 5.13],[3, p. 165, Theorem 
6.4]). Thus H contains its own limit points in X [10, p. 96, Theorem D(2)], and 
so X−H contains no limit points of H. Therefore X−H contains no limit points of 
A since A ⊆ H. Since A⎪B is a separation of H−{p}, then B contains no limit 
points of A either. Thus W = B∪(X−H) contains no limit points of A. Since 
{A,W} is a partition of X−{p}, then A must contain its own limit points in 
X−{p}. Thus A is closed in X−{p} [10, p. 96, Theorem D(2)], and so W = 
(X−{p})−A is open in X−{p}. 
 Therefore A⎪W is a separation of X−{p}, so that p is a cut point of the 
homogeneous continuum X. However, this contradicts Theorem 2, and so 
A∩Bd(H) ≠ ∅. Similarly B∩Bd(H) ≠ ∅. 
 
 Simmons showed that if X is a homogeneous continuum, H is a 2-pod in 
X, p∈X, and A⎪B is a separation of H−{p}, then A∪{p} and B∪{p} are 2-pods 
in X. Furthermore, there exist r,t∈X such that Bd(H) = {r,t}, Bd(A∪{p}) = {r,p} 



 

Journal of Mathematical Sciences & Mathematics Education, Vol. 4 No. 1     23 

and Bd(B∪{p}) = {t,p} [9, Lemma 5]. Lemma 4 generalizes this result to 
include all n-pods in X. 
 
Lemma 4. Suppose X is a homogeneous continuum, H is an n-pod in X, p∈X, 
and A⎪B is a separation of H−{p}. Then A∪{p} and B∪{p} are subcontinua of 
X with Bd(A∪{p}) = [A∩Bd(H)]∪{p} and Bd(B∪{p}) = [B∩Bd(H)]∪{p}. 
 
Proof. We will begin by showing that A∪{p} is a subcontinuum of X. Define K 
= A∪{p} and W = B∪(X−H). It was shown in Lemma 3 that {A,W} is a 
partition of X−{p}, so that {K,W} is a partition of X, and so K = X−W. It was 
also shown in Lemma 3 that W is open in X−{p}. Since X is Hausdorff then {p} 
is closed in X [5, p. 64, Corollary 3.12], and so X−{p} is open in X. Since W is 
open in X−{p} and X−{p} is open in X, then W is open in X by Lemma 1(c). 
Thus K = X−W is closed in X. Since K is a closed subset of the compact space 
X, then K is compact ([8, p. 162, Theorem 2.11],[10, p. 111, Theorem A]). 
Furthermore, since H and {p} are connected subsets of X and A⎪B is a 
separation of H−{p}, then K = A∪{p} is connected [12, Lemma 1]. Hence 
A∪{p} = K is a subcontinuum of X. 
 To show that Bd(A∪{p}) = [A∩Bd(H)]∪{p}, recall that it was shown 
above that K is closed in X. Therefore Bd(K) ⊆ K [3, p. 105, Theorem 4.5(6)]. 
 Furthermore, to show that K−([A∩Bd(H)]∪{p}) contains no points of 
Bd(K), note that B∪{p} is closed in X by an argument similar to that above for 
K = A∪{p}. Therefore O = X−(B∪{p}) is open in X. Furthermore, H−Bd(H) = 
Int(H) ([6, p. 46, Theorem 10],[11, p. 28, Theorem 3.14(b)]) is open in X as 
well. Define V = O∩Int(H), which is open in X. Since A⎪B is a separation of 
H−{p}, then {A,B} is a partition of H−{p}, and so {A,B,{p}} is a partition of H 
since it was shown in Lemma 3 that p∈H. 
 Suppose q∈K−([A∩Bd(H)]∪{p}). Then q∈K = A∪{p} and 
q∉[A∩Bd(H)]∪{p}, so that q∈A∪{p}, q∉A∩Bd(H), and q∉{p}. Since 
q∈A∪{p} but q∉{p} then q∈A. Since q∈A but q∉A∩Bd(H) then q∉Bd(H). 
Therefore q∈A and q∉Bd(H). Since q∈A then q∉B∪{p} since {A,B,{p}} is a 
partition of H, and so q∈X−(B∪{p}) = O. Furthermore, since q∈A ⊆ H and 
q∉Bd(H) then q∈H−Bd(H) = Int(H) ([6, p. 46, Theorem 10],[11, p. 28, Theorem 
3.14(b)]). Therefore q∈O∩Int(H) = V.  
 Finally, if x∈V = O∩Int(H) then x∈O and x∈Int(H). Since x∈Int(H) then 
x∈H since Int(H) ⊆ H. Furthermore, since x∈O = X−(B∪{p}) then x∉B∪{p}. 
Thus x∈H−(B∪{p}) = A since {A,B,{p}} is a partition of H. Therefore V ⊆ A. 
 Thus if q∈K−([A∩Bd(H)]∪{p}), then there is an open set V in X such 
that q∈V ⊆ A, and so q∈Int(A). Furthermore, since A ⊆ K, then Int(A) ⊆ Int(K) 
([3, p. 103, Theorem 4.3(3)],[7, p. 90, Theorem 1(iv)]). Therefore q∈Int(A) ⊆ 
Int(K) = K−Bd(K) ([6, p. 46, Theorem 10],[11, p. 28, Theorem 3.14(b)]), so that 
q∉Bd(K). 
 Since Bd(K) ⊆ K and q∉Bd(K) for each q∈K−([A∩Bd(H)]∪{p}), then 
Bd(K) ⊆ [A∩Bd(H)]∪{p}. 
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 Conversely, to show that A∩Bd(H) ⊆ Bd(K), suppose that q∈A∩Bd(H), 
O is open in X, and q∈O. Since A⎪B is a separation of H−{p}, then A is open in 
H−{p}. Thus A = V∩(H−{p}) for some open set V in X. Define U = O∩V, 
which is open in X. Since q∈O and q∈A∩Bd(H) ⊆ A = V∩(H−{p}) ⊆ V, then 
q∈O∩V = U. Since q∈Bd(H), U is open in X, and q∈U, then U∩H ≠ ∅ and 
U∩(X−H) ≠ ∅, and so there exist c∈U∩H and d∈U∩(X−H). Furthermore, it 
was shown in Lemma 3 that p∈H, so that H = (H−{p})∪{p}. Therefore c∈U∩H 
= (O∩V)∩H = (O∩V)∩[(H−{p})∪{p}] = [(O∩V)∩(H−{p})] ∪ [(O∩V)∩{p}] 
= [O∩(V∩(H−{p}))] ∪ [O∩(V∩{p})] = [O∩A] ∪ [O∩(V∩{p})] ⊆ [O∩A] ∪ 
[O∩{p}] = O∩(A∪{p}) = O∩K. Furthermore, since K ⊆ H then X−H ⊆ X−K. 
Thus d∈U∩(X−H) ⊆ U∩(X−K) = O∩V∩(X−K) ⊆ O∩(X−K). Hence O∩K ≠ 
∅ and O∩(X−K) ≠ ∅ for each open set O in X containing q, so that q∈Bd(K). 
Therefore q∈Bd(K) for each q∈A∩Bd(H), and so A∩Bd(H) ⊆ Bd(K). 
 Finally, to show that p∈Bd(K), suppose O is open in X and p∈O. Assume 
that O∩A = ∅. Define V = O∩H and U = B∪V. Since A⎪B is a separation of 
H−{p}, then A ≠ ∅, B ≠ ∅, and A is open in H−{p}. Therefore U ≠ ∅ as well 
since B ⊆ U.  
 Since X is Hausdorff then {p} is closed in X [5, p. 64, Corollary 3.12], so 
that X−{p} is open in X. Thus H−{p} = H∩(X−{p}) is open in H. Since A is 
open in H−{p} and H−{p} is open in H, then A is open in H by Lemma 1(c). 
Similarly B is open in H. Furthermore, since O is open in X and V = O∩H, then 
V is open in H. Therefore U = B∪V is open in H. Thus A and U are nonempty 
relatively open sets in H.  
 Then A∩U = A∩(B∪V) = (A∩B) ∪ (A∩V) = ∅ ∪ (A∩V) = A∩V = 
A∩(O∩H) = (A∩O)∩H = ∅∩H (by the assumption above that O∩A = ∅) = ∅. 
Furthermore, since p∈O and it was shown in Lemma 3 that p∈H, then p∈O∩H 
= V. Thus A∪U = A∪(B∪V) = (A∪B)∪V = (H−{p})∪V = H (since p∈V and 
V = O∩H ⊆ H). 
 Thus A⎪U is a separation of the connected set H. This is a contradiction, 
and so O∩A ≠ ∅. Similarly O∩B ≠ ∅. Thus there exist c∈O∩A and d∈O∩B. 
Then c∈O∩A ⊆ O∩K. Furthermore, since A⎪B is a separation of H−{p}, then 
A∩B = ∅ and p∉B. Therefore B ⊆ X−(A∪{p}) = X−K. Thus d∈O∩B ⊆ 
O∩(X−K). Hence O∩K ≠ ∅ and O∩(X−K) ≠ ∅ for each open set O in X 
containing p, so that p∈Bd(K). 
 Since A∩Bd(H) ⊆ Bd(K) and p∈Bd(K), then [A∩Bd(H)]∪{p} ⊆ Bd(K). 
Hence Bd(A∪{p}) = Bd(K) = [A∩Bd(H)]∪{p}. In a similar manner, B∪{p} is 
a subcontinuum of X with Bd(B∪{p}) = [B∩Bd(H)]∪{p}. 
 
 Having completed the preliminary material, we are now prepared to 
present the main results of the paper in two theorems. Together these results 
completely characterize the conditions under which a homogeneous continuum 
X with pod number P(X) = n will contain n-pods which can be separated by a 
single point in X. Theorem 5 also identifies precisely which points in X separate 
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the n-pods of X. The results of Theorem 5 and Theorem 6 are then combined in 
a corollary that follows. 
 

Main Theorems 
 
 Simmons showed that if X is a homogeneous continuum, P(X) = 2, H is a 
2-pod in X, p∈X, and {p} separates H, then p∈Int(H) [9, Lemma 3]. It is not 
explicitly stated in this result that P(X) = 2. However, since it is assumed that X 
contains a 2-pod, then P(X) ≤ 2. Furthermore, by the results of [12, Corollary 4] 
and Theorem 2 of this paper, P(X) = S(X) ≥ 2. Hence the hypothesis of [9, 
Lemma 3] implies that P(X) = 2. Theorem 5 extends this result by establishing 
the converse that if p∈Int(H), then {p} separates H. Furthermore, it is verified 
that the result of Theorem 5 is not vacuously true by showing that Int(H) ≠ ∅. 
 
Theorem 5.  Suppose X is a homogeneous continuum, P(X) = 2, and H is a  
2-pod in X. Then Int(H) ≠ ∅ and for each point p∈X, {p} separates H if and 
only if p∈Int(H). 
 
Proof. Since H is a 2-pod in X then Bd(H) = {r,t} for some r,t∈X. Then {r,t} 
separates X and Int(H)⎪(X−H) is a separation of X−{r,t} [12, Lemma 3]. Thus 
Int(H) ≠ ∅ and X−H ≠ ∅. Since X−H ≠ ∅ then there exists some q∈X−H.  
 If p∈Int(H), then {p,q} separates X since {r,t} separates X [9, main 
theorem]. Therefore {p} separates H [9, Lemma 4]. Conversely, if p∈X and {p} 
separates H, then p∈Int(H) [9, Lemma 3]. Hence Int(H) ≠ ∅ and for each point 
p∈X, {p} separates H if and only if p∈Int(H). 
 
Theorem 6.  Suppose X is a homogeneous continuum, P(X) = n ≥ 3, and H is an 
n-pod in X. Then no single point in X separates H. 
 
Proof. Suppose p∈X. 
 
 Case 1: Suppose p∈X−H. Then H−{p} = H, which is connected. Thus 
{p} does not separate H. 
 Case 2: Suppose p∈Bd(H). If {p} separates H, then H−{p} is not 
connected, so there is a separation A⎪B of H−{p}. Therefore A∩Bd(H) ≠ ∅ and 
B∩Bd(H) ≠ ∅ by Lemma 3. Since H is an n-pod in X and p∈Bd(H), then there 
exist { }n

1iix =  ⊆ X (n ≥ 3) and an integer r such that Bd(H) = { }n
1iix = , 1 < r < n, p = 

rx , { } 1r
1iix −
=  ⊆ A, and { }n

1riix +=  ⊆ B.  
 By Lemma 4, A∪{p} is a subcontinuum of X with Bd(A∪{p}) = 
[A∩Bd(H)]∪{p} = { } 1r

1iix −
= ∪{ }rx  = { }r

1iix = , so that })p{A(Bd ∪  = r. Therefore 
A∪{p} is an r-pod in X, where r < n. This is a contradiction since P(X) = n. 
Hence {p} does not separate H. 
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 Case 3: Suppose p∈Int(H). If {p} separates H, then H−{p} is not 
connected, so there is a separation A⎪B of H−{p}. Since p∈Int(H) = H−Bd(H) 
([6, p. 46, Theorem 10],[11, p. 28, Theorem 3.14(b)]), then p∉Bd(H). Therefore 
Bd(H) ⊆ H−{p} = A∪B. Since n ≥ 3, then either A or B contains at least two 
points of Bd(H). Without loss of generality, suppose B contains at least two 
points of Bd(H). Furthermore, A∩Bd(H) ≠ ∅ and B∩Bd(H) ≠ ∅ by Lemma 3. 
Since H is an n-pod in X, then there exist { }n

1iix =  ⊆ X (n ≥ 3) and an integer r 

such that Bd(H) = { }n
1iix = , 1 ≤ r ≤ n−2, { }r

1iix =  ⊆ A, and { }n
1riix +=  ⊆ B.  

 By Lemma 4, A∪{p} is a subcontinuum of X with Bd(A∪{p}) = 
[A∩Bd(H)]∪{p} = { }r

1iix = ∪{p}, so that })p{A(Bd ∪  = r + 1. Therefore A∪{p} 
is an (r+1)-pod in X, where r + 1 ≤ (n − 2) + 1 = n − 1 < n. This is a 
contradiction since P(X) = n. Hence {p} does not separate H. 
 In conclusion, since {Int(H),Bd(H),X−H} is a partition of X ([2, p. 142, 
Theorem 30.2],[4, p. 72, Theorem 4.11(4)]), then the above three cases imply 
that no single point in X separates H. 
 
 Theorem 5 and Theorem 6 can be combined to address all possible cases 
relative to the pod number of a homogeneous continuum. The following result 
establishes this fact.  
 
Corollary 7.  Suppose X is a homogeneous continuum, P(X) = n and H is an  
n-pod in X. Then H can be separated by a single point in X if and only if n = 2. 
Furthermore, if n = 2, then { }Hseparates}p{Xp∈  = Int(H) ≠ ∅. 
 
Proof. By the definition of the pod number of X, P(X) ≥ 2. If n = 2, then by 
Theorem 5 Int(H) ≠ ∅ and {p} separates X if and only if p∈Int(H). If n > 2, then 
by Theorem 6 no point in X separates H. The result follows. 
 

Concluding Remarks 
 
 If Case 3 of Theorem 6 is omitted, then the result provides an extension 
of the last part of [9, Lemma 3] from 2-pods specifically to n-pods in general. 
For if H is an n-pod in a homogeneous continuum X, p∈X, and A⎪B is a 
separation of H−{p}, then {p} separates H. Then the contrapositives of Cases 1 
and 2 of Theorem 6 imply that p∉X−H and p∉Bd(H). Since 
{Int(H),Bd(H),X−H} is a partition of X ([2, p. 142, Theorem 30.2],[4, p. 72, 
Theorem 4.11(4)]), then p∈Int(H). However, this is a moot point since Case 3 of 
Theorem 6 establishes that no point p∈Int(H) can separate H. 
 
† Richard Winton, Ph.D., Tarleton State University, USA 
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