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Abstract 

An irrational number is a number that cannot be expressed as a fraction 

q
p

 for any integers p and q , 0�q . It follows that irrational numbers have 

decimal expansions that neither terminate nor become periodic. This makes 
proofs of irrationality very difficult. Examples of proven irrational numbers 

include e , ,2 � ,  and �
�

�1
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1
n n

, but there remains many numbers for which it 

is not known whether or not they are irrational, such as Euler’s constant.  One 
can find many methods used to evaluate )2(� at least some of which depend on 

the convergence of dydx
xy� � 	
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. A proof of the convergence of the integral 

representation of )2(� is presented. 
 

Background 

 Consider the infinite sum ...
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himself worked on this problem and obtained approximation formulas that 
allowed him to determine the sum to the first several decimal places.  In 1734, at 

the age of 28 Euler proved 
6

)2(
2�� � . Here is a modification of one of 

Euler’s proofs [1].  The sine function can be represented as the power series, 
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Divide by x and replace x with x we have, 
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We call this function f and note that the roots of  f  are �,9 ,4 , 222 ���  . 
Adding the reciprocals of the roots of a polynomial results in the negative of the 
ratio of the linear coefficient to the constant coefficient, or if 
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Applying this to f  produces, �


� 222 16
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.  Hence, Euler 

concluded that the sum is 
6

2�
. It is important to note that not all power series 

share all of the properties of polynomials.  
 

The convergence of dydx
xy� � 	
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One can find many methods used to evaluate )2(� , at least some of which 

depend on  the convergence of dydx
xy� � 	
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 [2].  A proof is presented here. 
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,  where 10  � , �R  shown.  

    

Then, if RIII ��
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by symmetry define dxdy
xy

dxdy
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Begin with �S . 
 

�����

�

�

�
� ln

11
1

1
10

1

0

1

0

1

1

1

0

1

1

	�
	

���
�

�
��
�

�

	
�

	
� �� �� �

		

	

	

	

dy
y

dydx
y

dxdy
xy

S

 
and, � � 0lnlim
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value of 
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Continuing with �J . We note that  

 i)  �R is increasing as 
� 0�  so �I is increasing as 
� 0� , 

 ii) � � � ��� 		 1  ,0 x 1  ,0  is increasing as 
� 0�  so �J  is 

increasing  as  
� 0�  and 
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nn yx  is absolutely convergent on � � � ��� 		 1  ,0  x  1  ,0 ,  (1) 

becomes, 
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 Thus, 
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Since, �J  is increasing as 
� 0� and �J  is bounded by 
6

2�
we have 
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Thus, for all 0�� , ��
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Conclusion 

We now see that [2] 

 dydx
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