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Abstract 

The t test is classic for testing a paired comparison when the 
distribution of difference scores from a random sample are normally distributed. 
For unspecified distributions, the sign test or the Wilcoxon signed rank test can 
be utilized. Without knowledge of the underlying distributions, the permutation 
test can be utilized both for the original observations as well as their ranks.  For 
the permutation test, the significance level is exact when calculating all possible 
permutations. The approximate significance level is used when the numbers of 
permutations are very large. A simulation study is conducted to compare the 
power of the t, signed, and signed rank tests. 

Introduction 

One way to do an experiment is to assign a group of subjects to one 
particular treatment and to assign another group of subjects to another treatment. 
In such an experiment, the experimenter would like to determine whether there 
is no treatment difference between the two groups. Another way of comparing 
two treatments is by pairing the subjects.  Here, the experimenter wants to 
assign two treatments to the same subject, one before some circumstance and the 
other after. Another matching possibility is the selection of pairs of students 
with the same ability and motivation.  Such selection should be based pairing 
subjects that are of the highest similarity. 

The usual method of analyzing data from two related samples is by 
applying Student’s t test to the difference in average scores. To use the t statistic, 
an experimenter can assume that the difference scores are an independent 
random sample from a normal distribution. When these assumptions are 
satisfied, the t-test is unbiased and is the most powerful test to use. In practice, 
the t-test assumptions on the observations are sometimes unrealistic. Sometimes 
the differences between scores are not represented by scores, but rather as signs 
or ranks. 

In the next section, we will explain the sign test, which is applicable to 
both quantitative and qualitative observations. Then, we will explain the 
matched pairs analogue with scores by using a permutation test. Under the null 
hypothesis, one can permute the scores as either positive or negative. We will 
also explain the Wilcoxon rank sum test. If the sample size is small, one can 
permute all possible permutations. If the sample is moderately large, then one 
can select a random sample of permutations. A large sample approximation will 
be utilized for large sample size. Finally, we will use simulation for comparing 
the power of the tests. 
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Hypothesis Testing 

Consider a bivariate random sample of size n, (X1,Y1), (X2,Y2),..., 
(Xn,Yn). The comparison is made for each pair of (Xi,Yi),i=1,2,...,n. Let "+" be 
the event of Xi < Yi or Xi - Yi < 0 (the positive difference between Yi - Xi), let "-
" be the event that Xi   > Yi or Xi – Yi > 0, and "0" be the event Xi = Yi or Yi – Xi
= 0. The null hypothesis to be tested is H0: P(X < Y) = P(X > Y)  and the two-
tailed alternative hypothesis is  Ha: P(X < Y)  P(X > Y). The lower-tailed 
alternative is Ha: P(X < Y) < P(X > Y), which is the number of positive is less 
than the number of negative or where X tends to be smaller than Y. The upper-
tailed alternative is Ha: P(X < Y) > P(X > Y), which is the number of positive is 
more than the number of negative or where X tends to be greater than Y. In the 
case of testing the location of the parameter or the median, then the null 
hypothesis becomes H0: E(X - Y) = 0.  The median of X equals the median of Y
against the two tailed alternative H0: E(X - Y). If X and Y have a different 
median, the lower tailed alternative is H0:E(X - Y) > 0 and the upper tailed 
alternative is H0:E(X - Y) < 0. See (Conover, 1999). 

Sign Test 

Dating back to 1710, the sign test is the oldest test of all nonparametric 
tests. This test is simple and easy to use. The sign test can be applied to both 
numerical and ordinal measurements. For this test, the differences between Yi -
Xi are random variables with symmetric distribution. The distribution of a 
random variable X is symmetric about x=0 if P(X  -x) = P(X x) or F(x) = 1 - 
F(-x). If we omit the ties from the difference between Yi - Xi, the sign test is 
used to compare the probability of positive difference with negative difference. 
Under the null hypothesis, we expect that the number of positive pairs of Xi < Yi
are equal to the number of negative pairs of Xi  > Yi. Thus, when the null 
hypothesis is true we will have about half of the difference scores to be positive 
and about half to be negative. In a Bernoulli trial, we may call each positive pair 
a "success" and a negative pair as a "failure". Since P(Xi < Yi) + P(Xi > Yi)=1 
and under the null hypothesis, P(Xi < Yi) = P(Xi > Yi) hence H0: P(+) = P(Xi <
Yi) = 1/2. Note that in terms of testing the medians, the null hypothesis becomes 
the median difference between X and Y which is zero. See (Conover, 1999, and  
Siegel & Castellan, 1988). 

Now let the test statistic S+ , be the number of + pairs; that is S+ is the 
number of pairs (X,Y) where Xi is less than Yi. Thus, for the lower-tailed test, p-
value is given by 
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Example 

Below is the grade of my students from one of my elementary statistics 
classes in Spring semester 2005. Let Xi be the first exam and Yi be the second 
exam. Consider the hypothesis that the grade for the second exam is higher than 
that of the first exam. The grade is as follows: 

------------------------------------------------------------------------- 
Name         Xi      Yi     Yi - Xi    Name      Xi      Yi    Yi - Xi 
------------------------------------------------------------------------- 
Justin          46       45       -        Charmain     81     66        - 
Travis         65       86       +       Alexis           93     90        -  
Vanessa      62       82       +       Brandon       46     51        +   
Shelton       75       65       -        Tonya           57     70        +  
Jessica        83       93       +       Garrett          59     47         -  
Rebekah     82       78       -        Brittany        70     86         +  
Talley         72       45       -        Matthew       74     88         +   
Adam         64       63       -        Stephanie      80     54         -  
Bradley      64       63       -        Kelli              81     60         - 
Jeremy       66       76       +        Megan           84    79         - 
Shannon    59        78       +       Marissa          82     82        0 
Schimank  59        80      +        Melinda         96     92         - 
Robin        78       75        -        Lindsey          59     67        +  
Priscilla     63       60        -        Cody              91     97        + 
Robert       73       93       +        Doyle            56      40         - 
------------------------------------------------------------------------- 

From the above table, there are 16 positive, 13 negative, and 1 tie. We discard a 
tie, and use the remaining sample of 29. The p-value is P(S+

13)= .3555.0
2
12913

0

29

i i
 Since the p-value is big, there is no difference  

between the first and the second exam scores.  

Large Sample Approximation for Sign Test 

If the sample size is large, one can use the standard normal distribution 
to approximate binomial probability. Recall that the mean of binomial is np =
n/2, and the variance is np(1-p) = n/4. Thus, the value of z is given by z =(S+-

) / =(S+-.5n) /(.5 n ). Note that one needs to make an adjustment from 
discrete probability (binomial) to a continuous distribution (normal) and which 
is called continuity correction. Therefore, the formula becomes z=(S+ .5-.5n)/( 
.5 n ), where 0.5 is used for the continuity correction.  

From the previous example, using the normal approximations, we have 
z = - 0.56 and P(z  <  - 0.56) = 0.2877. 
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The Wilcoxon Signed Ranks Test 

The sign test discussed in the previous section analyzes the data based 
on the sign of the differences within pairs, which include positive, negative, and 
zero.   If we are considering the sizes of the positive differences relative to the 
sizes of negative differences, a more powerful test can be used. The Wilcoxon 
signed ranks test is considering both the sign and the magnitude of the 
differences. 

The practitioner can tell the sign of the difference between any pair, 
and rank the differences in order of absolute size. Let Di = Yi - Xi be the 
difference score for any matched pair, representing the difference between the 
pair's scores under two treatments X and Y. When the two scores of any pair are 
equal, that is Di = Xi - Yi = 0 (no difference between two treatments is observed 
for that pair), omit these pairs from further analysis and the sample size is 
reduced accordingly. Thus, n is the number of matched pairs minus the number 
of pairs for which Di = 0.  

To use the Wilcoxon signed rank test, ranks from 1 to n are assigned to 
these pairs according to relative size of |Di|; the rank of 1 is given to the smallest 
|Di|, the rank of 2 to the next smallest, etc, with n assigned to the largest |Di|. If 
two or more Di's are equal to each other, assign D to each of these which is the 
average rank that would have otherwise been assigned. For example Di's are -2, -
2, 2, 2. Assign the tied values the same rank, that is the average rank 
(1+2+3+4)/4 = 2.5 to each of the four Di's. Then to each rank, assign -2.5, -2.5, 
for the negative Di's and 2.5, 2.5 for the positive Di's. The next Di in order would 
receive the rank of 5 since the rank of 1, 2, 3, 4 have already been assigned. 

In this test we assume that the distribution of the differences is 
symmetric. It is easy to see symmetry in discrete distribution, since the left half 
of the graph of the probability function is the mirror image of the right half. For 
example sign test with p=.5 is symmetric. 

Definition: The cumulative distribution function (cdf) of any random variable X 
is symmetric at about x=b, for some constant b, if the probability of X  b-x 
equals the probability of X  b+x for every value of x.

Example: Let a random variable X of the continuous type have a probability 
distribution function (pdf) whose graph is symmetric with respect to x = b. If the 
mean value of X exists, then E(X) = b. 

Proof:
b

b
dxxfbxdxxfbxdxxfbxbXE .)()()()()()()(  Let 

y = b - x in the first term and let z = x - b in the second term on the right hand 

side of the equal sign.  Thus, E(X-b)= -
0
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0
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to symmetry f(b-y) = f(b+z), thus E(X - b)= -

0
)( dyybfy +

0
)( dzzbfz = 0. Therefore, E(X) = b. 

As explained in the section of hypothesis testing, we want to compare a 
subject before and after training. Let D be the random variable of the difference 
scores for any pair (X,Y). Its cumulative distribution function is F(d). The null 
hypothesis to be tested is H0: F(d) = 1 - F(-d)   and the alternative hypothesis is 
given by Ha: F(d)  <  1 - F(-d) or Ha: F(d) > 1 - F(-d) or Ha:  F(d)  1 - F(-d). 
The first alternative says that the differences tend to fall more to the negative 
side of 0. A special case of the alternative is a location parameter where F(d) = 
G(d - ), where G(d) is a distribution symmetrical about 0. Thus the hypothesis 
becomes H0:  =0 and Ha:  > 0 or Ha:  < 0  or Ha:  0. This  can be 
the median or the mean of the differences. 

If H0 is true, the treatment X and treatment Y are equivalent, that is the 
samples of X and Y are both from populations with the same medians, or the 
numbers of positive are the same as the numbers of negative. For the null 
hypothesis to be true, we would expect to find some of the larger positive Di
tends to favor treatment X and some tend to favor treatment Y. That is, when 
there is no difference between treatment X and treatment Y, some of the larger 
ranks would come from positive Di's whereas others would come from negative 
Di's. Thus if we summed those ranks having positive signs and summed those 
ranks having negative signs, we would expect the two sums to be approximately 
equal when the null hypothesis is true. When the sum of the negative ranks is 
very much different from the sum of the positive ranks, we would conclude that 
the treatment X is different from the treatment Y, and thus we would reject the 
null hypothesis. We reject H0 if either the sum of the ranks for the negative Di's 
or the sum of the ranks for positive Di's are too small or too big. (See Conover, 
1999; Hollander & Wolfe, 1999; and Siegel & Castellan, 1988). 

Permutation Test for Rank Observations 

Assume that there is no tie in the difference between scores.  Under the 
null hypothesis, for each pair, any difference is as likely to be a positive as it is 
to be a negative, that is for each pair X  > Y is the same chance as X < Y. So 
there are 2n possible permutations. The steps for the Wilcoxon signed rank test 
are as follows: 

Determine the sign rank and calculate SR+obs, the sum of positive 
signed ranks  for the original observations 

Examine all 2n possible permutations, obtain the signed ranks, and 
calculate  statistic SR+

Compare each SR+ statistic computed above with SR+obs. For the upper 
tailed test, whenever SR+  SR+obs record 1. 
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The upper p-value is the total number of 1's divided by 2n. For the two-
tailed test , the p-value is two times the one-tailed p-value. 

If it is not possible to obtain all possible permutations, one can 
randomly select sample permutations, say 1000 or 2000. Let Ri be the ranks of 
absolute difference.  Consider independent random variables U1, U2,..., Un where  
Ui = 0 with probability 0.5, and  Ui = 1 with probability 0.5. 
                
Then,  randomly selected permutations can give the value of SR+ as follows; 

.
1 i

n

i i RUSR  (See Good, 1994; and  Higgins, 2004). 

Example 

 In the  previous example , there are 229 = 536, 870,912  possible 
permutations of the data. Using Resampling Stats software  we take a random 
sample of 5000 from all possible permutations. The  approximate one tail p-
value is 0.2384 . For the pair t-test, d =2.3448, and sd=17.3056.  The p-value 
for the paired t-test is P(t > 29*2.3448/17.3056) = P(t > 0.7297) = 0.2358. The 
frequency distribution and histogram of the permutation distribution is shown 
below. 
   

Frequency of Permutation distribution 
Bin Center    Frequency    Percent     Cumulative percent 

    
60                 1              0.0                 0.0 
80                 6              0.1                 0.1 
100              46              0.9                 1.1 
120            114              2.3                 3.3 
140            226              4.5                 7.9 
160            393              7.9               15.7 
180            592            11.8               27.6 
200            801            16.0               43.6 
220            826            16.5               60.1 
240            767            15.3               75.4 
260            562            11.2               86.7 
280            394              7.9               94.6 
300            161              3.2               97.8 
320              86              1.7               99.5 
340              20              0.4               99.9 
360                5              0.1             100.0 
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Large Sample Approximation for signed ranks test 

  For a large sample size, we can use the standard normal table to 
approximate the p-value. 

 The mean of SR+ is ,
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 From the previous example we have, SR+=251.5, E(SR+)=217.5, and 

Var(SR+)=2138.75. Thus .72.0
75.2138

7.2175.05.251z  The p-value = 

P(z >  0.72) = 0.2358. 
Theorem: For any positive integers n, and k, 

1

0
,1)1(),(

k

r
k

k

r

nrnS where S(n,r)= 1r+2r+3r+...+nr, r=0,1,2,... 

Lemma: S(n,0) = 10+20+30+...+n0 = n,
               S(n,1) = 11+21+31+...+n1 = n(n+1)/2,  
               S(n,2) = 12 + 22 + 32+...+n2 = n(n+1)(2n+1)/6,  
               S(n,3)=13+23+33+...+n3= n2(n+1)2/4.

 Proof:  (See Freund)  

Permutation Test for the Original Observations 

  There are two different methods to determine the test for the 
permutation distributions.  One method is to find the mean of the differences, 
and the other method is to either obtain  the sum of positive differences, SO+ , or 
the sum of negative differences, SO-.  Both methods are equivalent, since SO+ + 
S0 is equal to the sum of all observations.  Thus, the mean of the differences is 
just the average of the sum of the positive and the negative.  Below are the steps 
for computing p-values using the permutation distributions. 

Obtain the differences from observations, Di's and compute the mean of 
the differences, D obs.

For the differences of n samples, determine the number of possible 
outcomes of plus and minus signs to the |Di|'s, 2n.

For each of the 2n, compute statistic D
Compare each statistic D  computed above with D obs. For the upper 

tailed test, whenever D D obs , record 1. 
The upper p-value is the total number of 1's divided by 2n. For the two-

tailed test, the p-value is two times the one-tailed p-value. 

If it is not possible to obtain all 2n permutation distributions, we can 
select random sample permutations, 2000 for example. Let the random variables 
W1,W2,...,Wn be independent,  where    Wi =  -1 with probability 0.5 and  Wi =1  
with probability 0.5. Then a randomly selected permutation can give the mean 

value of the differences, D , as follows .||
1

1
i

n

i i DWnD  The permutation 

distribution of S+ is similar to the SR+, except Ri  is replaced by |Di|. (See 
Higgins, 2004). 
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 For a large sample size, one can approximate the p-value using standard normal 
approximation.  Calculate the variance of the mean difference which is 

n

i iDn
1

22 || .  Then use z score to standardize the D .  Note that the expected 

value of the mean differences is zero since E(Wi)  = 0. Again using example 3.1, 
we have S+=68 and Var(S+) = 5658.  Thus p-value = P(z  > 5658/68 ) = P(z  
> 0.90) = 0.1841.  Therefore, there is no sufficient evidence to conclude that the 
mean score of exam 2 is greater than the mean score of exam 1. 

Example 

When we apply a paired t-test, the mean of the difference is 1.1034, the 
standard deviation is 14.1708, the test statistic is t = 0.4193, the one-tailed p-
value is 0.3391. Since the number of permutations are too large, we then 
randomly sampled 5000 from all possible permutations. The upper-tailed p-
value is 0.3518. 

Power of the Tests 

  Butar Butar and Park (2008) have been successfully comparing the 
power of the tests for two independent samples. They simulated data from the 
uniform, exponential, chi-square, lognormal, and the Pareto distributions. Here 
we would generated the observations from the uniform, exponential, chi-square, 
lognormal, and the Pareto distributions mentioned above. But it was not possible 
that the distribution of the differences of the data could be a Uniform, 
Exponential, chi-square, lognormal, and a Pareto.  Here we would compare the 
pair of the t-distribution to the sign and the Wilcoxon  signed rank test for each 
distribution mentioned above. We will generate the observations from each 
marginal distribution, not from their difference score. All populations were 
generated by using the Matlab. The following is how we generate the data. 
Consider a group of n subjects that have been tested at two different times. 
Assume the first data generated were a "before" score of an individual is 
represented as 
                                       
                                        niy iii ,...,2,1,11 ,

where yi1 is the score of the ith subject at the first testing  period, i is the true 
score of the ith subject's score, and i1 is the random error of the ith subject's 
score  at the first testing period. An individual's "after" score is represented as 

                                       niy iii ,...,2,1,22 ,   

where yi2 is the score of the ith subject at the second testing  period, i  is the 
true score of the ith subject's score,  i2 is the random error of the ith subject's 
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score  at the second testing period, and  is a treatment effect, which is common 
to all subject's "after"  scores. The difference between the "after" and "before" 
test  score is given by:  

                                      yi2 - yi1 =  + i2 - i1, i=1,2,...,n. 

  An individual score of i1, i2 was generated from the Uniform, 
Exponential, chi-square, lognormal, or the Pareto.  The value of  will be 
increased from 0 to a larger number so that the power of the test would be closer 
to one for both tests. 

  We will use small (n=10), moderate (n=30) and large sample sizes 
(n=50). Following Butar Butar and Park, the simulation is conducted as follows: 
1) Two samples of size n each are randomly selected from the probability 
distribution above. 2) Add a constant, , to each difference observation of 
treatment 2 and treatment 1. 3) Calculate the observed value of the t, the 
Wilcoxon signed, and the Wilcoxon signed rank statistic. 4) Resample the data 
1000 times to determine the p-value of the permutation test. 5) If a p-value is 
less than 0.05, then reject the null hypothesis using a test at the 5 % significance 
level. 6) Repeat steps 1-5 for a number of times, say 2000. 7) The power is the 
proportion of rejections. Again, complete steps 1-7 by increasing the value of a 
constant, , in step 2 until one gets a wide range of power functions. (See also 
Blair and Higgins, 1985). 

Figure 1-5 are the graphs of the power functions. Figure 1 shows the 
uniform distribution. Except for n=10, where the t-distribution looks best for 
n=30 and n=50. For the exponential, chi-square, lognormal, and the Pareto 
distributions (figures 2 - 5), both the sign and the Wilcoxon rank signed test are 
uniformly better than the t-test.  

Conclusion 

  We have shown three different methods for paired comparisons. The 
sign test is the simplest and it is easy to use. The only requirement for the sign 
test to work, is that the ordinal measurement is within pairs; that is if the score 
of one member of a pair can be ranked as less than  the score of the other 
member of the same pair. When the order of magnitude becomes a concern, then 
we recommend the use of the Wilcoxon  signed rank test. Also in the Wilcoxon 
signed rank test, the ordinal scale is both within and between pairs  observations.  
The permutation test can be used for both original observations, as well as for 
the rank of the data. It is a powerful test compared to the parametric t-test. When 
the data are heavy-tailed, the permutation test is much more efficient than the t-
test. From the simulations, we found that it is better to utilize permutation tests 
rather than the  regular t-distribution for the skewed distributions; we see evident 
from the power comparisons (see figures 2 – 5). 
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