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Abstract 

 Suppose a curve C in the plane 2R  is defined by a continuous function 
over a closed bounded interval. A formula is developed for the radius of 
revolution from a nonvertical linear axis of revolution L to C. An alternate 
derivation is also provided. The radius of revolution is then used to produce a 
formula for the surface area generated by revolving C about L. This result is 
combined with the standard formula for surface area about a vertical axis to 
yield a generalized formula for the surface area generated by revolving C about 
an arbitrary linear axis of revolution. 

Introduction 

 Many applications of derivatives and integrals are routinely studied in 
calculus. These applications can sometimes be extended to a more general 
setting than is normally found in the calculus textbooks, such as the result  
on centroids in [9].  Another concept commonly studied in calculus is that  
of the surface area generated by revolving a continuous curve about a line  
in the plane 2R . Some textbooks limit this subject to the revolution of  
curves about the x and y axes ([1],[2],[5],[6],[7],[8]). In these cases, if a  
curve C is defined by y = f(x), a  x  b, then the surface area generated is  

 SA = 
b

a

ds)x(f2  = 
b

a

2 dx)x(f1)x(f2  (1) 

when C is revolved about the x-axis and 

 SA = 
b

a

dsx2  = 
b

a

2 dx)x(f1x2  (2) 

when C is revolved about the y-axis, where ds = dx)x(f1 2  is the  
differential arclength. 
 Other textbooks, however, include the somewhat more general cases  
of revolving curves about arbitrary horizontal and vertical lines in 2R
([3],[4]). In these more general cases, the surface area is given by 
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 SA = 
b

a

dst)x(f2  = 
b

a

2 dx)x(f1t)x(f2  (3) 

when C is revolved about the horizontal line y = t and  

 SA = 
b

a

dstx2  = 
b

a

2 dx)x(f1tx2  (4) 

when C is revolved about the vertical line x = t. 
 The goal of this paper is to develop a formula for the surface area  
produced by revolving a continuous curve about a completely arbitrary line in 

2R . Since vertical lines are not functions, then the surface area produced by 
revolving a curve about a vertical axis of revolution provided in (4) above must 
be considered separately. Thus the specific goal here is to develop a formula for 
the surface area generated by revolving a continuous curve about an arbitrary 
nonvertical line, greatly generalizing (3) above. The resulting formula, together 
with (4), will then provide the result sought. 

Radius of Revolution 

 In cases (1) and (3) above, the radius of revolution r of a point P relative  
to a horizontal axis of revolution L is the vertical distance between P and L.  
In a similar manner, in cases (2) and (4) above, r is the horizontal distance 
between the point P and the vertical axis of revolution L. In all of the above 
cases, r can be described as the length of the unique line segment T in 2R
with the following properties: 
  (a) One endpoint of T is P. 
  (b) The other endpoint of T lies on L. 
  (c) T is perpendicular to L. 
Using this general description for r, all four of the above cases can be condensed 
into the single formula 

 SA = 
b

a

dsr2  = 
b

a

2 dx)x(f1r2  (5) 

 The goal of this paper then reduces to determining a more general  
formula for r for all nonvertical axes of revolution, which includes the  
formula in (3) relative to horizontal lines as a special case. To this end,  
suppose a curve C is defined by a continuous function y = f(x) for a  x  b.  
Suppose further that the axis of revolution L is defined by the linear  
function A(x) = mx  t, where m and t are real numbers and m  0.  
(See Figure 1.) 
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Figure 1 

If a  p  b, then the point on C corresponding to x = p is P(p,f(p)).  
(See Figure 2.) 

Figure 2 
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The slope of the line L  through P and perpendicular to L is 
m
1 . Thus the 

equation of L  is y  f(p) = )px(
m
1 , or y = )px(

m
1)p(f . (See Figure 3.) 

Figure 3 

 To determine the point of intersection Q of L  with L, we set mx  t = 

)px(
m
1)p(f . Therefore mx  t = 

m
p

m
x)p(f , so that 

m
xmx  =

t
m
p)p(f . Thus xxm2  = mf(p)  p  mt, and so x = 

1m
mtp)p(mf

2 .

 Substituting this expression for x into y = mx  t yields  

y = t
1m

mtp)p(mfm 2  = 
1m

)1m(t
1m

tmmp)p(fm
2

2

2

22

 = 

1m
ttmtmmp)p(fm

2

222

 = 
1m

tmp)p(fm
2

2

. Thus Q has coordinates 

1m
tmp)p(fm,

1m
mtp)p(mfQ 2

2

2 . (See Figure 4.)  
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Figure 4 

 The radius of revolution r of the point P about the axis L is therefore  
the length of the segment T with endpoints P and Q. Using the distance formula 
in 2R , we have  
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1m
tmp)p(f)1(tmp)p(fm

2

2222

 = 

1m
)1m(tmp)p(f

2

22

 = 
1m

1mtmp)p(f
2

22

 = 

1m

)tmp()p(f
2

 = 

1m

)p(A)p(f
2

. (6) 

Alternate Derivation of the Radius of Revolution 

 A different, and perhaps somewhat less intuitive, derivation of (6) is 
found in [7, pp. 596-597]. For this alternate approach, suppose  is the acute 
angle between the x-axis and the axis of revolution L. Then  = )m(tan 1  and 

tan( ) = m , so that cos( ) = 
1m

1
2

. (See Figure 5.) 

Figure 5 

 If R is the point on L vertically above or below the point P(p,f(p)), then  
R has coordinates R(p,A(p)). Thus in triangle PQR we have d(P,R) =  

)p(A)p(f . Furthermore, QPR is congruent to  since L  is perpendicular  

|m| 
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to L. (See Figure 6.) 

Figure 6 

Hence 
)p(A)p(f

r  = cos( ), and so r = )p(A)p(f cos( ) = 

)p(A)p(f
1m

1
2

 = 
1m

)p(A)p(f
2

, which is consistent with (6). 

Surface Area 

 We are now prepared to generalize formula (3) to include all nonvertical, 
nonhorizontal axes of revolution. Applying (6) to each value of x for a  x  b, 
the radius of revolution of the point (x,f(x)) on the curve C about the axis L is  

r(x) = 
1m

)x(A)x(f
2

.

Hence the surface area generated by revolving C about L is  

SA = 
b

a
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b

a
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b

a

2

2
dx)x(f1)x(A)x(f

1m

2 , (7) 

where )x(A)x(f  is the vertical distance between C and L for each x such  
that a  x  b. 
 Note, however, that when the axis of revolution L is horizontal, then  
m = 0. In this case the equation of L simplifies to A(x) = t. Consequently, (7) 

reduces to SA = 
b

a

2 dx)x(f1t)x(f2 , which is consistent with (3) above. 

Hence the case for horizontal axes of revolution when m = 0 is included in (7). 

Conclusion 

 Combining (4) with (7), we have the following conclusion which includes  
all linear axes of revolution in 2R . If a curve C is defined by a continuous 
function y = f(x) for a  x  b, then the surface area generated by revolving C 
about a linear axis of revolution L is 

SA = 
.tmx)x(AbydefinedisLifdx)x(f1)x(A)x(f

1m

2

txbydefinedverticalisLifdx)x(f1tx2

b

a

2

2

b

a
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