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Abstract 

 

In this short communication, an extremal combinatorial problem concerning 

partition and covering of a finite set is discussed. It is pointed out that unlike the 

case with partition, no closed formula solution for determining the total number 

of coverings is known. Some  motivating steps are indicated. The application of 

compatibility relation to solve some minimization problem is outlined. 

 
Introduction 

 

It may be recalled that counting the number of elements in a set is a 

broad mathematical problem and a large number of them yet remaining 

unsolved or partially answered. 

However, in a typical combinatorial problem, as the one proposed in this paper, 

a relatively crisp description and some further structures are provided. 

Accordingly, such a problem may or may not have outright a closed formula 

solution even if it appears structurally feasible. In fact, many such problems do 

exist whereby either no solutions or partial solutions are available. For example, 

assume that a certain number n of objects is given. Is it possible to assign them 

sets so that each object is in atleast one set, each pair of objects are in exactly 

one set together, every two sets have exactly one object in common, and no set 

contains all or all but one of the objects? The answer depends on n and is only 

partially known to this day [7]. 

 In this paper we propose to discuss an extremal combinatorial problem 

concerning partition and covering of a finite set. 

Definition: Covering and partition of a finite set 

 Let S be a nonempty finite set. A decomposition of  S of the form  

,,,21 kAAAS ∪∪∪= � where φ≠iA  for all ki ,,2,1 �=  is called a 

covering of S. If, in addition, φ=∩ ji AA  for ji ≠ , then },,,{ 21 kAAA �  

is called a partition of S and the sets kAAA ,,, 21 � are called the blocks of the 

partition. 

 It follows that {S} is both a covering and a partition on S. 

Note also that an n-set can have atmost n blocks. It is well-known that a relation 

on S which is reflexive, symmetric and transitive, called an equivalence relation, 

gives a partition of S. A related notion is that of compatibility relation. A 

relation on S which is reflexive and symmetric is called a compatibility relation, 

sometimes denoted by ≈ . 
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Also, let R be a compatible relation on a set X, then Xyx ∈,  are called 

compatible if x R y. 

For example,  

Let },,,,{ 54321 AAAAAX =  where }2,1{1 =A , }4,3,2{2 =A , 

}5,4,3{3 =A , }4,2{4 =A  

}5,4{5 =A
 
and let R be given by  

jijiji RAAXAAAAR ∧∈= ,/),{( if Ai and Aj contain some common 

element}. 

Clearly, A1 R A2 ∧  A2 R A3 , but ¬ (A1RA3) . 

A simplified diagram is as follows: 

 

 

 

 

 

 

 

 

 

Note that, in the case of a compatibility relation, it is not necessary to draw 

loops at each element nor is it necessary to draw both xRy and yRx. 

Since a compatibility relation is not necessarily transitive, it does not necessarily 

define a partition; however, it does define a covering. A number of pleasing 

properties of compatibility relation have been investigated (see [4] and [5]) and 

used in solving certain minimization prolems of switching theory,  especially 

when the specification provided is incomplete. 

From the diagram above, it is easy to observe that the elements in each of the 

sets },,{ 421 AAA
,

},,{ 432 AAA
,

},,{ 542 AAA
,

},,{ 543 AAA  and 

},,,{ 5432 AAAA  are mutually compatible and the sets are not mutually 

disjoint. Accordingly, it does define only a covering of X. Infact, there may exist 

more than one combination of these sets to yield the covering of X. 

Further, in order to solve minimization problems, the following elaboration is in 

order. 

A subset XA ⊆ is said to be  a maximal compatibility block if any element 

of A is compatible to all other elements of A and no element of X – A is 

compatible to all the elements of A. Moreover, any element of the set which is 

related only to itself, and any two elements compatible to one another but to no 

other elements of the set are also the maximal compatibility blocks. 

It follows that a maximal compatibility block is the largest complete polygon in 

which every vertex is related to its every other vertex. For example, in the 

diagram above, },,,{ 4321 AAAA  is not a complete polygon. 

A1 

A2 

A5 

A3 

A4 
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Clearly, },,{ 421 AAA  and },,,{ 5432 AAAA are the only maximal 

compatibility blocks. Note that no other subset of X forms a compatibility block 

(see [4] and [5] for more details). 

 

Problem 

 

Let S be a non-empty set with n elements, usually called an n-set.  

Find: (a) the size of the family of all the partitions of S, denoted by  

and (b) the size of the family of all the coverings of S, denoted by  

Note that a relation between two partitions or two coverings or a partition and a 

covering will be understood by treating them as sets. 

 

Results 

 

Fact 1.  Proof follows by definition. 

Fact 2. In order to answer (a), one would wish to determine the number of  all 

possible distinct equivalence relations on S, for which no general method is 

known to exist. Nevertheless, in view of the fact that there exists a one to one 

correspondence between the classes of distinct equivalence relations defined on 

a set and the partition of that set, a combinatorial formulation is known as 

follows (see [ 1 ], [ 6 ], and many others): 

The number of partitions of an n-set into k blocks is given by 
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called a Starling number of the second kind. Follows, for 1≥n , 
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Also for 1≥≥ kn , 

 

�
�
�

�
�
� −

+
�
�
�

�
�
�

−

−
=

�
�
�

�
�
�

k

n
k

k

n

k

n 1

1

1  (see [ 1], p.18 and p.46 for the 

proof). 

Note that this recurrence relation has a precedent in the theory of integer 

partition viz., 

for 2≥≥ kn , 

)()1()( 1 knPnPnP kkk −+−= −  (see [ 1], p.14 for the proof ). 

Moreover, in view of the existence of a correspondence between set partitions 

and surjective mappings, the following is an explicit formula for stirling number 

of the second kind viz., 
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 (see [ 1 ], p.19 and p.46 for the proof ). 

The total number of partitions of an n-set, given by 
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is called a Bell number denoted by B(n). Also, B(n+1) =


=
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Note, however, that no explicit formulation is known for p(n), the number of 

partitions of the integer n ([ 1], p.14). 

In order to compute p(n) of all partitions of any n-set, the following nice  

 

formula is constructed in [3]:  

                                          !

)(

n

np

   = nth coefficient of the analytic function   

  f(x) = exp(exp(n)-1) in its standard representation in the form of Taylor series.  

Fact 3. No general formulation is known to explicitly determine 

 
 We putforward some motivating steps in this regard. 

Step 1. It is known that the total number of nonempty subsets of an n-set      

            S = 2n -1. 

Step 2. As noted above, the total number of partitions of an n-set S=B(n), the      

Bell number = the sets of all possible combinations  of  nonempty   

 disjoint subsets of S which form a partition of S. 

Step 3. Now, if one knows the number of all possible combinations of  

             subsets of S which are not disjoint and form a covering of S,  

             then the  sum of  the two numbers determined in step 2 and step 3            

             would answer (b). 

However, to our knowledge, no closed formula for this is known.  

Nevertheless, the following is a further known reflection in this regard. The 

largest number (say �) of subsets of an n-set S one can have, if no two of them 

are disjoint, is half the number of all subsets of S; that is, � = (2n / 2) = 2n-1. 

The proof follows from the fact that between any subset T and its complement S 

- T, atmost one can be chosen. In order to obtain the aforesaid half of the 

number, one element x of S is chosen and all the subsets of S that contain x are 

tracked. Clearly, the family of all such subsets of S would form a covering of S, 

for each element x of S. Accordingly, the number (say C ) of all such coverings 

would be n. 

For example, if S = {1,2,3}, then �= 4, and {{1},{1,2},{1,3},{1,2,3}}  is a 

covering of S corresponding to the choice of the element 1 of S, and C = 4. 

 Note, however, that besides C = 4, there are many other coverings of S; 

for example, {{1}, {2},{1,2},{1,3},{1,2,3}}, etc. 
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At this end, we mention without proof a very nice result obtained in [2] proving 

a best possible bound on the number of subsets of a given finite set that form its 

covering. 

Let n,s,t be integers with s> t>1 and n > (t+2) 2s-t-1. If n subsets of a set S with 

s elements have union S then some t of them have union S. The result is best 

possible ([2], p197).  

 

Concluding Remarks 

 

 In view of the fact that a relation which is reflexive and symmetric ( but 

not necessarily transitive) has been found characteristically useful in explicating 

a variety of problems e.g., minimization problems of switching theory (see [4] 

and [5] for some details); it has increasingly become pertinent to closely 

investigate various issues in this regard. 

 In the first place, besides providing a sufficiently rich partition 

calculus, the paper puts forward some challenging problems of varying degrees 
specially from the pedagogical point of view; for example, constructing an 

algorithm to compute a maximal or minimal number of subsets of an n-set under 

varying conditions that would cover the set. In turn, for a given compatibility 

relation on an n-set, it is a good exercise to compute maximal compatibility 

blocks and coverings. 

 The paper also delineates an ‘open’ combinatorial problem to formulate 

a closed formula to determine the size of the family of all the coverings of an n-

set and provides some motivating steps to solve it.  
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