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Abstract 

 
  A brief history of the problem contained in this paper is provided. Basic 
definitions are also provided due to some variation in the literature. Preliminary 
results related to separation in homogeneous continua are developed to provide 
access to the main theorem. The existence of a homeomorphism with special 
properties on homogeneous metric continua is established. It is determined that 
in one class of homogeneous metric continua a natural partition exists for the set 
of boundary points of subcontinua with minimal boundary. Finally, concluding 
remarks offer some possibilities for extending the results of this paper. 
 

Introduction 
 
 In 1980 Simmons [11] developed several results on separation in 
homogeneous continua. These results were extended in 2007 and 2009 by 
Winton ([14],[15]). Earlier in 1975, Hagopian [6] established the existence of  
a homeomorphism on homogeneous metric continua which maps an arbitrary 
point to an arbitrary image within a neighborhood without mapping any point  
in the space beyond a prescribed distance from its preimage. These results  
will be extended and applied to produce a very natural partition for the set of 
boundary points of subcontinua with minimal three-point boundaries. Due to 
some variation throughout the literature, we begin with basic definitions and 
notations. 
 
Definitions 
 
 In the most general sense, a continuum is a compact, connected, 
Hausdorff topological space. A metric continuum is a compact, connected  
metric space. If (X,ρ) is a metric space, x∈X, and r is a positive real number, 
then the sphere about x of radius r is S(x,r) = { }r)y,x(Xy <ρ∈ .  
 If H is a subset of a topological space X, then Int(H), Cl(H), and Bd(H) 
are the topological interior, closure, and boundary of H, respectively. A 
separation A⏐B of H is a partition of H into nonempty relatively open sets A  
and B. Furthermore, H separates X if and only if X is connected but X−H is not 
connected.  
 If X is a topological space and n is an integer greater than 1, then an  
n-pod of X is a subcontinuum of X whose boundary contains precisely n points. 
Furthermore, n is the pod number of X if and only if X contains an n-pod but X 
contains no k-pod whenever k is an integer and 1 < k < n. The pod number of X 
is denoted by P(X). 
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Preliminary Results 

 
 In 1980 Simmons showed that if X is a homogeneous continuum with 
pod number 2, H is a 2-pod in X, x∈Int(H), y∈X−H, and {x,y} separates X, 
then {x} separates H [11, Lemma 4]. However, this result cannot be extended 
for larger values of P(X). For in 2009 Winton showed that if X is a 
homogeneous continuum with pod number n ≥ 3 and H is an n-pod in X, then no 
single point can separate H [15, Theorem 6]. A direct application of this result 
appears in the following lemma. 
 
Lemma 1: Suppose X is a homogeneous continuum, P(X) = 3, H is a 3-pod in 
X, x∈Int(H), and y,z∈X−H. Then {x,y,z} does not separate X. 
 
Proof: If {x,y,z} separates X, then there is a separation A⏐B of X−{x,y,z}. 
Define U = A∩H and V = B∩H. Since {x,y,z} is closed in X ([7, p. 64, 
Corollary 3.12],[12, p. 130, Theorem A]), then X−{x,y,z} is open in X. 
Furthermore, since A and B are open in X−{x,y,z} and X−{x,y,z} is open in X, 
then A and B are open in X [15, Lemma 1(c)]. Therefore U and V are open in H. 
However, A ⊆ X−{x} and B ⊆ X−{x}, so that U ⊆ H−{x} ⊆ H and V ⊆ H−{x} 
⊆ H. Thus U and V are open in H−{x} [15, Lemma 1(a)]. 
 Assume U = A∩H = ∅, so that A ⊆ X−H. Since A⏐B is a separation of 
X−{x,y,z}, then A is open in X−{x,y,z}. Furthermore, since {x} is closed in X 
([7, p. 64, Corollary 3.12],[12, p. 130, Theorem A]), then X−{x} is open in X. 
Therefore X−{x,y,z} = (X−{y,z})∩(X−{x}) is open in X−{y,z}. Thus A is open 
in X−{x,y,z} and X−{x,y,z} is open in X−{y,z}, so that A is open in X−{y,z} 
[15, Lemma 1(c)]. Similarly B is open in X−{y,z}.  
 Define D = B∪{x}, so that D ≠ ∅ and D ⊆ B∪Int(H) since x∈Int(H). 
Furthermore, since A∩H = ∅ then H ⊆ X−A. Since y,z∈X−H then H−{x} = 
H−{x,y,z} = H∩(X−{x,y,z}) ⊆ (X−A)∩(X−{x,y,z}) = B since A⏐B is a 
separation of X−{x,y,z}. Therefore H = (H−{x})∪{x} ⊆ B∪{x} = D, and so 
B∪Int(H) ⊆ B∪H ⊆ B∪D = D. Hence D = B∪Int(H). However, Int(H) ⊆ 
X−{y,z} since y,z∈X−H. Since Int(H) is open in X and Int(H) ⊆ X−{y,z} ⊆ X, 
then Int(H) is open in X−{y,z} [15, Lemma 1(a)]. Since B and Int(H) are open in 
X−{y,z}, then D = B∪Int(H) is open in X−{y,z}.  
 Thus A and D are nonempty open sets in X−{y,z}. Furthermore, A∩D = 
A∩(B∪{x}) = (A∩B)∪(A∩{x}) = ∅ since A⏐B is a separation of X−{x,y,z}, 
x∈Int(H), and A∩H = ∅ (by assumption). Finally, A∪D = A∪(B∪{x}) = 
(A∪B)∪{x} = (X−{x,y,z})∪{x} = X−{y,z}. Hence A⏐D is a separation of 
X−{y,z}, and so A∪{y,z} and D∪{y,z} are 2-pods in X with boundary {y,z} 
([11, Lemma 1],[14, Lemma 2]). However, this is a contradiction since P(X) = 
3, and so U ≠ ∅. Similarly V ≠ ∅. 
 Thus U and V are nonempty open sets in H−{x}. Furthermore, U∩V ⊆ 
A∩B = ∅, and U∪V = (A∩H)∪(B∩H) = (A∪B)∩H = (X−{x,y,z})∩H = 
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H−{x,y,z} = H−{x} since y,z∈X−H. Thus U⏐V is a separation of H−{x}, and so 
{x} separates H. This is a contradiction since P(X) = 3 and H is a 3-pod in X 
[15, Theorem 6]. Therefore {x,y,z} does not separate X. 
 
 The result of Lemma 1 can be applied to the complementary 3-pod of H 
based on the work of Winton [14]. The symmetrical result produced in Lemma 2 
will make the proofs of Lemma 4 and Theorem 5 more efficient. 
 
Lemma 2: Suppose X is a homogeneous continuum, P(X) = 3, H is a 3-pod in 
X, x∈X−H, and y,z∈Int(H). Then {x,y,z} does not separate X. 
 
Proof: Since H is a 3-pod in X, then K = Cl(X−H) is also a 3-pod in X with 
Bd(K) = Bd(H) [14, Theorem 6]. Furthermore, since H is compact and X is 
Hausdorff, then H is closed in X ([1, p. 81, Corollary 5.13],[3, p. 165, Theorem 
6.4]). Thus Bd(H) ⊆ H ([3, p. 105, Theorem 4.5(6)],[9, p. 90, Theorem 
1(vi)],[12, p. 69, (3)]), and so (X−H)∩Bd(H) = ∅. Therefore X−H =  
[(X−H)∪Bd(H)]−Bd(H) = [(X−H)∪Bd(X−H)]−Bd(K) = Cl(X−H)−Bd(K)  
([10, p. 87, no. 12],[13, p. 28, Theorem 3.14(a)]) = K−Bd(K) = Int(K)  
([8, p. 46, Theorem 10],[13, p. 28, Theorem 3.14(b)]). Similarly X−K = Int(H). 
 Alternatively, {Int(H),Bd(H),X−H} and {Int(K),Bd(K),X−K} are 
partitions of X ([2, p. 142, Theorem 30.2],[4, p. 72, Theorem 4.11(4)]). 
Furthermore, since K = Cl(X−H), then Bd(K) = Bd(H) [14, Theorem 6], 
Int(H)∩Int(K) = ∅, and (X−H)∩(X−K) = ∅. Therefore X−H = Int(K) and X−K 
= Int(H). 
 Thus K is a 3-pod in X, x∈X−H = Int(K), and y,z∈Int(H) = X−K. Hence 
{x,y,z} does not separate X by Lemma 1. 
 
 We will now apply a result of Hagopian [6] to establish the existence of a 
homeomorphism with special separation properties on any homogeneous metric 
continuum X. This homeomorphism will allow each point in a finite subset of X 
to remain relatively close to its preimage while mapping any point x in X to any 
other point in a neighborhood of x.  
 
Theorem 3: Suppose that (X,ρ) is a homogeneous metric continuum, x∈X, 
{ }n

1iix =  ⊆ X, and iN  is a neighborhood of ix  for 1 ≤ i ≤ n. Then there exists a 
neighborhood N of x with the property that for each y∈N, there is a 
homeomorphism h:X→X such that h(x) = y and h( ix )∈ iN  for 1 ≤ i ≤ n. 
 
Proof: Since iN  is a neighborhood of ix , then for each i, 1 ≤ i ≤ n, there exists 

a real number iε  > 0 such that ix ∈S( ix , iε ) ⊆ iN . Define ε = min{ }n
1ii =ε . 

Hence there exists a neighborhood N of x with the property that for each y,z∈N, 
there is a homeomorphism h:X→X such that h(y) = z and ( ))v(h,vρ  < ε for 
each v∈X [6, Lemma 4]. Consequently, for each y∈N, there is a 
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homeomorphism h:X→X such that h(x) = y and ( ))x(h,x iiρ  < ε ≤ iε  for 1 ≤ i ≤ 
n, and so h( ix )∈S( ix , iε ) ⊆ iN . Therefore h(x) = y and h( ix )∈ iN  for 1 ≤ i ≤ 
n. 
 
 In homogeneous metric continua with pod number 2, it is possible for  
2-pods to have exactly one common boundary point. For example, suppose X is 
the unit circle in the Cartesian plane. Then the arc from the point (0,1) clockwise 
to (1,0) and the arc from (1,0) clockwise to (0,−1) are 2-pods in X with exactly 
one common boundary point (1,0). Furthermore, any two distinct arcs with 
exactly one common endpoint constitute a pair of 2-pods containing exactly one 
common boundary point. However, this property fails in homogeneous metric 
continua with pod number 3. More specifically, it will be shown that in 
homogeneous metric continua with pod number 3, the boundaries of 3-pods are 
either disjoint or coincide. 
 
Lemma 4: Suppose X is a homogeneous metric continuum, P(X) = 3, and H and 
K are 3-pods in X. Then either Bd(H)∩Bd(K) = ∅ or Bd(H) = Bd(K). 
 
Proof: Define n = )K(Bd)H(Bd ∩ . Since H and K are 3-pods in X, then 
n∈{0,1,2,3}. Suppose Bd(H) = {x,y,z} and Bd(K) = {p,q,r}. Therefore 
Int(K)⏐(X−K) is a separation of X−{p,q,r} [14, Lemma 3]. 
 Suppose n = 1. Without loss of generality, assume x = p, so that 
y,z∉{p,q,r}. Therefore y,z∈X−{p,q,r} = Int(K)∪(X−K). 
 Case 1: If y,z∈Int(K), then Int(K) is a neighborhood of both y and z. By 
Theorem 3 (or the Weak Effros Property ([5],[11])) there exists a neighborhood 
N of x with the property that for each u∈N, there is a homeomorphism h:X→X 
such that h(x) = u and h(y),h(z)∈Int(K). Since x = p∈Bd(K) = Bd(X−K) and N 
is a neighborhood of x, then N∩(X−K) ≠ ∅, and so there exists some 
x′∈N∩(X−K). Since x′∈N then there is a homeomorphism h:X→X such that 
h(x) = x′ and h(y),h(z)∈Int(K). Define y′ = h(y) and z′ = h(z). Since {x,y,z} = 
Bd(H) then {x,y,z} separates X [14, Lemma 3]. Furthermore, since h is a 
homeomorphism, then {x′,y′,z′} = {h(x),h(y),h(z)} also separates X. However, 
this contradicts Lemma 2 since x′∈N∩(X−K) ⊆ X−K and y′,z′∈Int(K).  
 Case 2: On the other hand, if y,z∈X−K, then y,z∈Int(M), where M = 
Cl(X−K) is the complementary 3-pod of K in X [14, Theorem 6]. By an 
argument similar to that above in Case 1, there is a homeomorphism h:X→X 
such that x′ = h(x)∈Int(K) = X−M, {y′,z′} = {h(y),h(z)} ⊆ X−K = Int(M), and 
{x′,y′,z′} separates X. This again contradicts Lemma 2. (Equivalently, use the 
fact that x′ = h(x)∈Int(K), {y′,z′} ⊆ X−K, and {x′,y′,z′} separates X to 
contradict Lemma 1.) 
 Case 3: Finally, if y∈Int(K) and z∈X−K, then an argument similar to that 
above in Case 1 will guarantee the existence of a homeomorphism h:X→X such 
that x′ = h(x)∈X−K, y′ = h(y)∈Int(K), z′ = h(z)∈X−K, and {x′,y′,z′} separates 
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X. If y∈X−K and z∈Int(K), then reverse the roles of y and z in the above 
argument to produce a homeomorphism h:X→X such that x′ = h(x)∈X−K,  
y′ = h(y)∈X−K, z′ = h(z)∈Int(K), and {x′,y′,z′} separates X. In either case, 
Lemma 1 is contradicted. 
 Thus all possible cases for n = 1 contradict either Lemma 1 or Lemma 2. 
Hence n = 1 is impossible. 
 Now suppose that n = 2. Without loss of generality, assume x = p and  
y = q, so that z∉{p,q,r}. Since it was argued above that Int(K)⏐(X−K) is a 
separation of X−{p,q,r}, then z∈X−{p,q,r} = Int(K)∪(X−K). 
 Case 4: Suppose z∈Int(K). Since y = q∈Bd(K), then an argument similar 
to that above in Case 1 produces a homeomorphism h:X→X such that y′ = 
h(y)∈X−K and z′ = h(z)∈Int(K). Furthermore, since Int(K)⏐(X−K) is a 
separation of X−Bd(K), (or by ([2, p. 142, Theorem 30.2],[4, p. 72, Theorem 
4.11(4)])), then {Int(K),Bd(K),X−K} is a partition of X. Thus if x′ = h(x), then 
exactly one of Int(K), Bd(K), and X−K contains x′. 
 Firstly, suppose that x′∈Bd(K). Since h is a homeomorphism, then h(H) 
and K are 3-pods in X with Bd[h(H)] = {x′,y′,z′}. Since y′∈X−K and 
{Int(K),Bd(K),X−K} is a partition of X, then y′∉Bd(K). Furthermore, since 
z′∈Int(K) = K−Bd(K) ([8, p. 46, Theorem 10],[13, p. 28, Theorem 3.14(b)]), 
then z′∉Bd(K). Therefore Bd[h(H)]∩Bd(K) = {x′}. Thus )K(Bd)]H(h[Bd ∩  = 
1, which is impossible according to the argument above for n = 1. 
 Secondly, suppose that x′∈Int(K). Then x′,z′∈Int(K) and y′∈X−K. 
Therefore {x′,y′,z′} does not separate X by Lemma 2. However, this is a 
contradiction since {x′,y′,z′} = Bd[h(H)] [14, Lemma 3]. 
 Thirdly, suppose that x′∈X−K. Then z′∈Int(K) and x′,y′∈X−K. 
Therefore {x′,y′,z′} does not separate X by Lemma 1. This is again a 
contradiction since {x′,y′,z′} = Bd[h(H)] [14, Lemma 3]. 
 Case 5: On the other hand, if z∈X−K, then define M = Cl(X−K). Thus M 
is a 3-pod with Bd(M) = Bd(K) [14, Theorem 6]. Furthermore, since Bd(M) = 
Bd(K) ⊆ K ([3, p. 105, Theorem 4.5(6)],[9, p. 90, Theorem 1(vi)],[12, p. 69, 
(3)]), then Int(M) = M−Bd(M) ([8, p. 46, Theorem 10],[13, p. 28, Theorem 
3.14(b)]) = M−Bd(K) = X−K, so that z∈X−K = Int(M).  
 Alternatively, {Int(K),Bd(K),X−K} and {Int(M),Bd(M),X−M} are 
partitions of X ([2, p. 142, Theorem 30.2],[4, p. 72, Theorem 4.11(4)]). 
Furthermore, since M = Cl(X−K), then Bd(M) = Bd(K) [14, Theorem 6], 
Int(K)∩Int(M) = ∅, and (X−K)∩(X−M) = ∅. Therefore X−K = Int(M) and  
X−M = Int(K), so that z∈X−K = Int(M).  
 Since x,y∈Bd(K) = Bd(M) and z∈Int(M), then replacing K with M in the 
argument above in Case 4 produces the same contradictions. Therefore n = 2 is 
also impossible. Since n∈{0,1,2,3}, then either n = 0 or n = 3. Hence either 
Bd(H)∩Bd(K) = ∅ or Bd(H) = Bd(K). 
 
 We are now prepared to present the main result of the paper. Lemma 4 
provides a most natural way in which to partition the set of all boundary points 
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of 3-pods in an arbitrary homogeneous metric continuum X with pod number 3. 
The cells of this partition are actually the boundaries of the 3-pods in X. 
Main Theorem 
 
Theorem 5: Suppose X is a homogeneous metric continuum, P(X) = 3,  
T = { }Xinpod3aisHH − , S = { }THsomefor)H(BdxXx ∈∈∈ , and  

P = { }TH)H(Bd ∈ . Then P is a partition of S. 
 
Proof: Since P(X) = 3, then X contains a 3-pod M∈T. Therefore Bd(M)∈P, so 
that P ≠ ∅. For each H∈T, H is a 3-pod. Therefore )H(Bd  = 3 > 0, so that 
Bd(H) ≠ ∅. Furthermore, it is clear that Bd(H) ⊆ S. Thus P is a nonempty 
collection of nonempty subsets of S. If H,K∈T, then H and K are 3-pods in X. 
Then by Lemma 4, either Bd(H)∩Bd(K) = ∅ or Bd(H) = Bd(K). Finally, x∈S  
if and only if x∈Bd(M) for some M∈T if and only if x∈U

TH

)H(Bd
∈

. Therefore  

S = U
TH

)H(Bd
∈

. Hence P is a partition of S. 

 
Concluding Remarks 

 
 The comments preceding Lemma 4, along with Lemma 4 and Theorem 5, 
establish a significant difference between the properties of boundary points of 
homogeneous metric continua with pod number 2 and those with pod number 3. 
Other differences between these two classes of homogeneous continua have 
already been established. For example, homogeneous continua with pod number 
P(X) = n can be separated by a single point if and only if n = 2 [15, Corollary 7]. 
It is possible that the results of this paper can be used to establish additional 
differences and possibly even common properties between these two classes of 
homogeneous metric continua. Perhaps these results can then be extended for 
homogeneous metric continua with pod number n > 3. 
 
† Richard Winton, Ph.D., Tarleton State University, Texas, USA 
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