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Abstract 
 

The means by which pacemaker cells of the mammalian 

suprachiasmatic nucleus (SCN) are synchronized is unknown. In the absence of 

anatomical data on the interneuronal connections among SCN neurons, 

mathematical models of SCN networks were developed based on possible 

connection topologies to meet biological restrictions. We employ a 

mathematical model proposed by Achermann and Kunz [1], to study the 

problem of interpreting synchronization in the SCN network from a dynamical 

systems viewpoint. Connection topologies with varying proportions of nearest 

neighbor neuronal connections and global connections in the SCN were 

compared against the transitional time to establish synchronization. These 

connection patterns were tested on two three-dimensional models with 8000 

neurons connected as a torus with Kronauer dynamics [2], with weak inhibitory 

coupling to each other. A theoretical proof is provided for the existence of stable 

limit cycles using the symmetry of the system of neurons. 

 

Introduction 

 

Jet-lag is an inconvenient reminder that the body is set to a 24 hour 

clock, known by scientists as the circadian rhythm. An internal biological clock 

is fundamental to all living organisms, influencing hormones that play a role in 

sleep and wakefulness, metabolic rate, and body temperature. In mammals, a 

master circadian pacemaker driving daily rhythms in behavior and physiology 

resides in the suprachiasmatic nucleus (SCN), a distinct group of cells found 

within the hypothalamus. The SCN contains multiple circadian oscillators that 

synchronize to environmental cycles and to each other in vivo. By 

synchronization here we mean the phenomenon of cellular bio-chemical 

oscillations synchronizing their periods as well as phases. The period of the 

rhythms within the SCN also depends upon intercellular communication.  

 

In 1999, Achermann and Kunz [1] refined the existing Kronauer's 

model [2] by representing each SCN cell as a Kronauer oscillator, and added 

coupling terms between oscillators to represent dynamic interactions with other 

SCN neurons. They did extensive numerical simulations with a variety of 

nearest neighbor type connections, and numerically showed that the network is 

indeed is capable of achieving synchrony in two dimensional networks. 

 

 A fundamental question at the heart of understanding the dynamics of 

the SCN is that of the nature and topology of the interconnectivity of neurons. 
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Theories on these aspects are abound; Lesauter and Silver’s [3] core shell 

model, Miller’s [4] completely locally/globally connected network, etc. 

Computer simulations shows completely globally connected neurons give rise to 

resynchronizing times which are far smaller than experimentally observed and 

completely locally connected neurons may either fail to synchronize, or far too 

slow to resynchronize the network.  

 

In an apparently unrelated context, Strogatz [5] coined the phrase small 

world models, to describe a class of networks in which each node (or cell) 

connects, communicates, or interacts mostly with its nearest neighbors, but there 

is a small fraction of connections (so-called long distance connections) that pan 

across the network. In connection with the problem of traversing a network he 

showed that addition of a small percentage of long distance connections lead to 

a dramatic reduction in the average path length in network traversing.  

 

In view of results on resynchronization times observed in computer 

simulations reported in [4] and the dramatic effect of few long distance 

connections have on average distance traversed in a network, it is sensible to 

investigate the effects of replacing a few nearest neighbor connections by long 

distance connections in the Achermann and Kunz [1] model of the SCN. We 

initiate such a study here. 

 

Stability of symmetric SCN system using Hopf Bifurcation 

 

The main focus on this section is to study the phase locking phenomena 

of SCN cells subject to the assumptions of dihedral symmetry and absence of 

light. Analysis below presets stability of the system and describe how to relate 

resynchronizing time to an eigenvalue of the linear approximation. System 

considered here is the Achermann and Knuz model [1] under a three 

dimensional lattice 21 3N N N× ×  [4] with coupling constants c ,  
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Let nD  be the Dihedral group acting on n objects. Thus nD  acts on 

nℜ  by permuting and reflecting coordinates. Let 
1 2 3N N NG D D D= × ×  and 

let G  acts on the state space 31 2 NN N
M = ℜ ×ℜ ×ℜ  of SCN dynamics by, 

1 2 31 2 3 1( ), ( ), ( ) , ,( , , )( , ) ( , )g l g m g n l m ng g g x y x y= . Let us assume the influence 

functions k  in equations (1), (2) are equivariant under the action of G  on M , 

i.e., , ,( , , )( ) ( ( ))g l m nk l m n x k g x=  and , ,( , , )( ) ( ( ))g l m nk l m n y k g y= .  
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For our analysis linear terms in k  provide adequate information, 

hence, as in Achermann and Kunz [1], we will assume that k  is linear. Thus, 

coupling terms can be written as 
, ,

, , , , , ,

, ,

( ) .p q r

l m n l m n p q r

p q r

k X k x= 
  If algebraic sum 

of coupling terms is equal to zero, i.e., 
, ,

, ,

, ,

0p q r

l m n

p q r

k =
  for all  l,m,n then G 

equvariance of k  amounts to the following: 
, ,

, ,

p q r

p q rk α β γ+ + +  depends on only on 

| |α , | |β  and | |γ  where α , β  and γ  are the position indices relative to the 

position p, q and r. Let 
, ,

, , , ,

p q r

p q rkα β γ α β γθ + + += . 

 

The analysis of the bifurcation system is done using the eigenvalues 

and eigenvectors of the linearized system (1), (2). To avoid having to see 

through the clutter of three subscripts, consider a simplified version of (1),(2) in 

which cells are arranged in a one-dimensional array. Results presented in this 

simplified case can be generalized to the three-dimensional array in an obvious 

way. The simplified system has the form,  
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The linear approximation of it is,  
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where
2υ ∈ℜ . Computation of the eigenvalues and eigenvectors of the 

linearized system can be done as follows:  
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Now the system (3) can be modified as  
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where 

2 i

Ne

π

ξ =  is the 
th

n  primitive root of unity in ℜ . This provides the 

eigenvalues of the system as  
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where 0,1, 2., 1k N= − .  
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Above simplified result can be generalized to the three-dimensional torus 

structure of size 1 2 3N N N× ×   
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where 1 2( 2 )/ ( 2 )/,i N i N
e e

π πξ µ= = , 3( 2 )/i N
e

πω =  and υ  is a vector in 
2ℜ  Let 

us concentrate on the 0,0,0V . The small positive ò  and the equal components υ  

will enable the Hopf Bifurcation on dynamics of this mode. The equal 

components of 0,0,0V  leads to a periodic solution: 

, ,

12
co| | s( ( )),l m nx v tδ φ

π
= −  

, ,

12
si| | n( ( )),l m ny v tδ φ

π
= −  

where φ  is the phase angle for any ( , , )l m n . So it is deduced that the mode 

(0,0,0)  give rise to phase locked oscillations in the system. Consideration of 

any other mode will end up with eigenvectors which have oscillatory 

components which are not in phase, i.e., those modes will destroy the phase 

locking property of the system. Observe that the resynchronization time is equal 
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to the time that other (hence non phase locked) modes to die out. Time constant 

which determine the decay rate of any mode is the reciprocal of the real part of 

the eigenvalue of that mode. Since the slowest mode is the one with the 

eigenvalue with the smallest real part, it follows that the resynchronization time 

is governed by the 1λ  which is the dominant stable eigenvalue. 

 

Network connection topology 

 

The complex functional behavior of various areas of animal cortex can 

be understood from the dynamical properties of relevant neurobiology networks. 

However, these networks are very hard to understand using standard dynamical 

systems analysis since they are complex in structure, network connections are 

time dependent, networks grow and shrink in size, connectivity has directional 

features, etc. By suppressing some of the complexities, one may obtain a simpler 

model where we can focus on aiming for a partial understanding of some key 

features from a mathematical view point.  

 

Strogatz [5] did much work on network patterns and came up with the 

concept of a Small world network [5]. In Strogatz' analysis, attempts to 

randomize the regular networks with a measure of probability parameter p . In 

regular networks, each node (or cell) connects to a few local cells only, while a 

random pattern mix neighborhood and long distance connections [5].  

 

The small values of p  has a highly nonlinear effect on ( )L p , 

contracting the distance not just between the pairs of cell that it connects, but 

between their immediate neighborhoods. This dramatic decrease in path length 

with increase of p  proposes the methodology called Small world which used as 

the connection topology of our research. One of the main aspect of research is to 

find out the effect of the small world networks on SCN system synchronization.  

 

Simulation Results 

 

Simulations were carried out to study the behavior SCN neurons under 

different connection patterns and various light conditions. The model considered 

consists of 16000 neurons in the SCN under the assumption of 8000 

neurons/unilateral with a standard deviation of one hour period. Also we 

assumed all the neurons are GABAergic [6] and behaves as Achermann and 

Kunz oscillators. 

 

 
 Figure 1: Local type: Single neuron communicates with 27 nearest 

neighbors. 
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Figure 2: Small-World type: Single neuron communicates with 19 nearest 

neighbors and 6 long distance neurons. 

 

To illustrate the effects of pure local connections, the neurons were coupled to 

the nearest 26 neurons (Local Type) as in figure 1. The figure 2 exemplifies the 

connection pattern of small world network by connecting to most of nearest 

neurons and 6 long distance connections (Small-World Type). 

 

 
 

Figure 3: Graph of state variables in two connection topologies 

with absence of light 

 

 
 

Figure 4: Graph of state variables in two connection topologies with 

presence of light.  
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Figure 5: Graph of state variables in two connection topologies under the 

presence of core light  

 

Figures 3, 4 and 5 display synchronization of neurons to produce a 

stable circadian rhythm. Pure locally connected (27 locally connected) networks 

indicate a dramatic difference in synchronization of phase and amplitude, while 

small world networks (19 Local and 6 long distance) rapidly synchronize with 

each other.  

 

Table 1 
Synchronization and phase locking times for different light conditions. 

 

Light condition 
Connection 

pattern 

Phase 

locking 

(days) 

Synchronization 

(days) 

Absence of Light Local Type 2.5 21 

Absence of Light Small-World Type 2 2 

10x10x10 core light Local Type 3 17 (more) 

10x10x10 core light Small-World Type 2.5 11 

Presence of light Local Type 2.5 4 

Presence of light Small-World Type 2.5 3 

 

Table 1 indicates a significance change of phase locking time under 

different connection patterns; Local Type and Small-World Type. The phase 

locking time dramatically reduces with few long distance connections that 

represent the small world networks (regardless of the light condition on the 

system). The synchronization occurs much faster in systems with few long 

distance connections when compared with locally connected networks. The 

presence of light will also make a difference in phase locking and 
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synchronization times. It can be clearly seen more exposure to ambient light 

tends to phase lock and synchronize faster. 

 

Concluding Remarks 

 

  The key result we obtained out of these simulations can be divided in to 

two categories. The impact of ambient light and effect of long distance 

connections. It was observed, with increased exposure of ambient light on SCN 

systems tends reduce the phase locking time as well as it dramatically reduce the 

synchronization time. That is increased exposure of ambient light make stronger 

phase locks and stronger synchronizations.  

 

It was clearly observed that existence of few long distance connections 

tends to reduce the synchronization and phase locking times under all different 

light conditions. This interesting result of time reduction strengthens Strogatz's 

[1] hypothesis of small world network where few long distance connections 

enables stronger communications in networks. The above results also show that 

to obtain the optimal connection pattern it is necessary to make educated long 

distance connections rather than increasing the number of communication paths.  

 

In theory of Hopf Bifurcation, it was proved the existence of limit cycle 

under the symmetry of systems which produces the stable state periods. This 

result guarantees the existence of stable periodic oscillations for systems which 

has only one positive real eigenvalue. 
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