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Abstract 

 

Fractal analysis is done by conducting rescaled range (R/S) analysis of 

time series. The Hurst exponent and the fractal (fractional) dimension of a time 

series can be estimated with the help of R/S analysis. The Hurst exponent can 

classify a given time series in terms of whether it is a random, a persistent, or an 

anti-persistent process. Simulation study is run to study the   distribution 

properties of the Hurst exponent using first-order autoregressive process. If time 

series data are randomly generated from a normal distribution then the estimated 

Hurst Exponents are also normally distributed.     

 

Fractals:  Concepts and Analysis 

Introduction 

The term fractal was coined by Benot Mandelbrot in 1975, from the Latin 

fractus or “fraction/ broken”.  The concept of fractals is that they have a large 

degree of self similarity within themselves.  They are copies of themselves 

buried deep within the original.  They also reveal infinite detail. 

Definition 1.   A Fractal is “a geometric shape that is self-similar and has 

fractional dimensions”.   

        Peters (1994) stated, “Fractal geometry is the geometry of the Demiurge.  

Unlike Euclidean geometry, it thrives on roughness and symmetry”.  Objects are 

infinitely complex.  The more closely one examines them, the more detail they 

reveal.  A fir tree, for example, is a fractal form.  It can be visualized as a cone 

sitting atop a rectangle.  Yet, fir trees are not cones and rectangles.  They are a 

complex network of branches, no branch being the same as any other.  

According to Peters (1994),   “Euclidean geometry cannot replicate a tree.  

Euclidean geometry recreates the perceived symmetry of the tree, but not the 

variety that actually builds its structure.  Underlying this perceived symmetry is 

a controlled randomness.  This “self-similar” quality is the defining 

characteristic of fractals”. 

Euclidean geometry has a primary characteristic that dimensions are 

integers.  For examples, lines are one-dimensional, planes are two-dimensional, 

and solids are three dimensional.  In general, Euclidean shapes are smooth, 

continuous, and homogeneous.  Consider a spherical sponge ball.  Though it 

resides in a three dimensional space, it has irregularities or holes.  It is not 

smooth, continuous, or homogeneous.  So it would be fair enough to say that, 

dimensionally, it is something more than a plane, but less than a solid.  Its 

dimension is somewhere between two and three.  It has a non-integer dimension 
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or a fractional dimension.  It is a fractal.  Similarly, a Sierpinski triangle clearly 

has higher dimensionality than a line, but less dimensionality than a plane.  It 

has triangle shaped holes in it.  Its dimension is between one and two.  Offering 

the same explanation, we see that a time series is a fractal.  A fractal dimension 

defines how an object fills the space it occupies. 

         The fractal dimension of a time series measures how serrated or jagged the 

given time series is.  As we would expect, a straight line has a fractal dimension 

of 1. It is the same as its Euclidean dimension.  A time series following a 

Gaussian random walk has a fractal dimension of 1.5.  If the fractal dimension 

of a time series is between 1 and 1.5, the time series is somewhere between a 

straight line and Gaussian random walk.  The importance of the fractal 

dimension of a time series lies in the fact that it recognizes that a process can be 

somewhere between deterministic and random. See Peters (1996). 

 

Measuring the Fractal Dimension 

Fractal dimension of a time series is calculated by measuring how jagged 

it is.  We count the number of circles of a given, fixed diameter that are needed 

to cover the entire time series.  We then increase the diameter and again count 

the number of circles required to cover the time series.  If we continue this 

process we see that, the number of circles has an exponential relationship with 

the radius of the circle.  The number of circles is related to the diameter of the 

circle according to the following relationship: 

                                  1* =D
dN                                                        (1) 

where, N = number of circles,  d = diameter, and D = fractal dimension. 

Equation (1) can be transformed to find the fractal dimension: 

                         

)
1

log(

)log(

d

N
D =                                                 (2) 

The Hurst Exponent 

The Hurst Exponent is directly related to the fractal dimension, which 

measures the smoothness of a surface, or, in our case, the smoothness of a time 

series.  The relationship between the fractal dimension D, and the Hurst 

Exponent H, is given by: 

                                  HD −= 2                                         (3) 

where, 10 ≤≤ H .   The closer the value of the Hurst Exponent to 0, the more 

jagged will the time series be. 

Definition 2.   The Hurst Exponent is the measure of the smoothness of fractal 

time series based on the asymptotic behavior of the rescaled range of the 

process. 

The Hurst Exponent, H, can be estimated by: 
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where T is the duration of the sample data and SR /  the corresponding value of 

the rescaled range.   

Definition 3.   Rescaled Range is the “measure characterizing the divergence of 

time series defined as the range of the mean-centered values for a given duration 

(T) divided by the standard deviation for that duration”. 

Hurst (1965) proposed: 

                                          
H

TkSR */ =                                          (5) 

where k is a constant that depends on the time series. See Gleick (1988), Peters 

(1994, 1996).  

  

 Rescaled Range Analysis 

Rescaled Range  

          Hurst (1965) developed the rescaled range analysis, a statistical method to 

analyze long records of natural phenomenon.  Rescaled Range Analysis is the 

central tool of fractal data modeling.  The two factors used in this range analysis 

are: 1) The difference between the maximum and the minimum cumulative 

values, and 2) The standard deviation from the observed values. 

The SR /  value in equation (5) is known as the rescaled range because it 

has a mean of zero and is expressed in terms of local standard deviation.  The 

SR /  value scales as we increase the time increment, T, by a power law value 

which equals H, the Hurst Exponent.  All fractals scale according to a power 

law.  By rescaling data, we can compare diverse phenomena and time periods.  

Rescaled Range Analysis enables us to describe a time series that has no 

characteristic scale.  

Brownian motion is the primary model for a random walk process.  

Einstein (1908) found the distance a particle covers increases with respect to 

time according to the following relation: 

                                        
5.0TR =                                          (6) 

where R is the distance covered by the particle in time T. See Peters (1994, 

1996). 

We begin with a time series NFF ,...,1 .  The mean value, Nµ  and the 

standard deviation, NS , of the time series are estimated.  The rescaled range is 

calculated by rescaling the time series by subtracting the sample mean: 

          Nii FS µ̂−= ;  i = 1,…,N                                                           (7) 

The resulting series has a mean of zero.  Now we form a cumulative time series 

Γ : 

           ii SS +=Γ 1 ;  i = 2,…,N                                         (8) 
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The adjusted range is the difference between the maximum value and the 

minimum value of iΓ : 

             ),...,min(),...,max( 11 NNNR ΓΓ−ΓΓ=                                       (9) 

The maximum value of iΓ  will always be greater than or equal to zero, and, the 

minimum value will always be less than or equal to zero.  Therefore the adjusted 

range will always be non-negative.  The adjusted range NR  is the distance that 

the system travels for time N.  We can use equation (6) only if the time series we 

are considering is independent of increasing values of N.  To take into account 

the fact that economic time series systems are not independent with respect to 

time, Hurst (1965) found a more general form of equation (6): 

                          
H

N NcSR *)/( =  ,                                                                     (10) 

where the subscript N for NSR )/(  refers to the SR /  value for NFF ,...,1 ;  c 

is a constant, and H is the Hurst Exponent.   

 

Estimation of the Hurst Exponent 

We will now take a look at the estimation of Hurst Exponent using the 

Rescaled Range Analysis.  The estimation procedure involves three basic steps. 

Step 1:  The cumulative total at each point in time, for a time series over a total 

duration N, is given by: 

                  �
=

−=Γ
k

i

NikN F
1

, )( µ , for 0 < k � N,                                    (11) 

where  Fi  = the value of the time series at time i, Nµ = the mean over the whole 

data set given by: 

                         �
=

=
N

i

iN F
N 1

1
µ                                                     (12) 

The range R of �, is given by: 

             ),()( ,, kNkN MinMaxR Γ−Γ=
   

                                                   (13) 

where )( ,kNMax Γ = the maximum value of kN ,Γ
 

and )( ,kNMin Γ = the 

minimum value of kN ,Γ .  See Peters (1996). 

The standard deviation of the values over the whole data set is given by: 

           �
=

−
−

=
N

i

NiF
N

S
1

2][
1

1
µ                                       (14) 

The Rescaled Range is given by: SR /  
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Step 2: We now take N = N/2.  The Rescaled Range SR /  is calculated 

following the procedure shown in Step 1 for the two segments.  The average 

value of SR /  is then calculated.  We repeat the entire procedure for 

successively smaller intervals over the data set, dividing each segment obtained 

in each step in two and calculating SR /  for each segment and finding the 

average SR / .  Pictorially the SR /  calculation looks like figure 1. See Saupe 

(1988). 

Step 3: The Hurst exponent is estimated by plotting the values of 

)/log( SR versus )log(N .  The slope of the best fitting line gives the estimate 

of the Hurst exponent.  This is done through an ordinary least squares regression 

procedure. We can generate “least squares” regression line using linear 

regression method.   

Figure 1:  Rescaled Range Analysis Process for estimating Hurst Exponent 

       

Inferences from the Hurst Exponent 

The value of Hurst Exponent varies between 0 and 1.  H = 0.5 implies a 

random walk or an independent process.  If 5.00 <≤ H  then we have anti-

persistence.  Such a process covers less “distance” than a random walk.  This 

means that a decreasing process or a time series, then, it is more probable that 

the process or the time series will show an increasing trend.  An anti-persistent 

time series will exhibit higher noise and more volatility.  If 15.0 ≤< H  then 

we have persistence.  A persistent process or a time series will cover more 

“distance” than a random walk.  This means that a decreasing process or a time 

series, then, it is more probable that the process will continue to decrease, and if 

we have an increasing time series, then, it is more probable that the time series 

will continue to show an increasing trend. A persistent time series has long 

memory effects.  In theory, the trend at a particular point in time affects the 

remainder of the time series. A persistent time series will exhibit higher noise 

and more volatility. 
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Definition 4. Volatility is “the statistical measure of the tendency of time series 

to rise or fall sharply within a period of time”. 

Example 1. The time series shown next (Figure 2) was taken for the purpose of 

estimating the Hurst Exponent.   

Figure 2:  Time Series collected over 128 data values 
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The data were collected over 128 time intervals and the rescaled range analysis 

gave the values in Table 1 shown below: 

Table 1.  Rescaled Range Analysis values to estimate H 

 

 

 

Figure 3:  Regression Line which estimates the Hurst Exponent   
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Segment size (N) 
  

N(log2 ) )/(log2 SR  

128 7 4.2754 

64 6 3.4539 

32 5 2.7479 

16 4 2.1550 
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The slope of the log – log plot of SR /  versus N gives the estimate of the Hurst 

exponent.  SAS output gave the estimate of H to be 0.7067. See Cody and Smith 

(1997). 

 

Time Series Models and the First Order Autoregressive Process 

A time series is a set of observation ix ’s, each one being recorded at a 

specific time i.  Time series can be of a discrete nature or a continuous nature.  

A discrete-time time series is one in which the set of times when the 

observations are recorded is a discrete set.  A continuous-time time series is one 

in which the observations are recorded continuously over some time interval.   

Definition 5.   A Time Series Model for the observed data { }tx  is “a 

specification of joint distributions of a sequence of random variables { }tX  of 

which { }tx  is postulated to be a realization”. See Brockwell and Davis (1996). 

 

A Zero-Mean Model:  IID Noise 

In one of the simplest of the models for a time series, there is no trend or a 

seasonal component and the observations are independent and identically 

distributed random variables with zero mean.  Such a sequence of random 

variables nXX ,,1 �  is referred to as IID noise.  By definition, for any positive 

integer n and real numbers nxx ,,1 � , 

][][],,[ 1111 nnnn xXPxXPxXxXP ≤≤=≤≤ ��  

                          = F ( )nxFx �)( 1   

where, ( )⋅F  is the cumulative distribution function of each of the IID variables 

nXX ,,1 � .  There is no dependence between observations in the IID noise 

model.  For all 1≥h  and for all x, nxx ,,1 � , 

xXP hn ≤+[ | ][],11 xXPxXxX hnnn ≤=≤= +� . 

This shows that the knowledge of random variables nXX ,,1 � cannot be used 

for predicting the behavior of hnX + . 

Stationary Models and White Noise  

A time series { }tX  is said to be stationary if it has statistical properties 

similar to those of the time-shifted series{ }htX + , for each integer h.   

Definition 6.   The Mean Function of time series { }tX  with ∞≤)(
2

tXE  is: 

( ) ( )tX XEt =µ  



 

Journal of Mathematical Sciences & Mathematics Education, Vol. 5 No. 1      15 

Definition 7.   The Covariance Function of{ }tX  is: 

( ) ( ) [ ]))())(((,, sXrXEXXCovsr XsXrsrX µµγ −−==  

for all integers r and s. 

Definition 8.   A time series { }tX  is (Weakly) Stationary if  ( )tXµ  is 

independent of t, and  ( )thtX ,+γ  is independent of t for each h. 

Definition 9.   If { }tX  is a sequence of uncorrelated random variables, each 

with zero mean and finite variance 
2σ , then it can be clearly seen that { }tX  is 

stationary with same covariance function as IID noise.  Such a sequence is 

referred to as white noise with mean 0 and variance 
2σ , and, is denoted by: 

      { }tX  ~ WN(0,
2σ ) 

First Order Autoregressive or AR(1) Process 

We assume that { }tX  is a stationary series satisfying the following 

equation: 

                 ttt ZXX += −1φ ,  t = ,,1 �±                                      (15) 

where { }tZ ~ WN(0,
2σ ), |φ | < 1 and { }tZ  is uncorrelated with sX  for each 

s < t.  An AR(1) process is defined by the stationary solution { }tX  of equation 

(17).  Here φ  is the autoregressive coefficient.  The initial observation 0X  can 

be treated as fixed or stochastic.  When 0X  is fixed with |φ | < 1, the model is 

stationary asymptotically.  When 0X  is stochastic or random, the model is 

stationary.  If |φ | = 1 then we have a random walk model.  If |φ | = 0 then we 

have white noise.  That is,     

tt ZX = ,  t = ,,1 �±   

tZ  is drawn from a distribution with mean 0 and a finite variance.  If |φ | > 1, 

this would mean the model would be explosively increasing or decreasing. 

 

Tests for Normality 

 

Goodness-of-Fit Tests for Normality 

Goodness-of-Fit tests are conducted to see whether a given data come 

from a population with a specific distribution.  Goodness-of-Fit tests are of the 

form: oH = Data follows a specific distribution and aH = Data does not follow 

a specific distribution. To test for normality of data we can conduct the 

following tests: 
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Shapiro-Wilk Test 

Test statistic W is calculated to test whether a random sample comes from a 

normal distribution.  The Shapiro-Wilk’s W can be calculated as follows: 

( )
( )�

�

=

=

−
=

n

i i

n

i ii

xx

xa
W

1

2

2

1 )(
 

where, the )(ix s are the ordered sample values and the ia s are constants.  The 

value of Prob < W is the p-value.  The p-value is compared with the chosen 

alpha (α ) level.  If the p-value is less than α  then the null hypothesis that the 

data are normally distributed is rejected.  Otherwise, the null hypothesis is not 

rejected and we have sufficient evidence to suggest that the data come from a 

normally distributed population. 

Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test is based on the empirical distribution function 

(ECDF).  Given N ordered points Nxx ,,1 �  the ECDF is defined as: 

( )
N

in
EN =  

where, ( )in  is the number of points less than ix  and the ix  are ordered from 

the smallest to the largest value.  The Kolmogorov-Smirnov statistic is defined 

as: 

( )
|)(|max

1 N

in
xFD i

Ni
−=

≤≤
 

where, F is the theoretical cumulative distribution of the continuous distribution 

being tested. In our case the distribution is normal.  The null hypothesis is 

rejected if the test statistic D is greater than the critical value obtained from the 

table.  The value of Prob > D is the p-value. If the p-value is less than α  then 

the null hypothesis that the data are normally distributed is rejected. 

 

Anderson-Darling Test 

Anderson-Darling test statistic is defined as: 

SNA −−=2

  where, 

( )
( )( )[ ]�

=

−+−+
−

=
N

i

iNi xFxF
N

i
S

1

11ln)(ln
12

 

Here, F is the cumulative distribution function of the distribution being tested 

and ix  are ordered.  The test is one sided and we reject the null hypothesis if the 

value of A is greater than the critical value.  Also, the value of Prob > 
2A  is the 
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p-value.  If the p-value is less than the level of significance α  then the null 

hypothesis is rejected. 

 

Distribution Properties of Hurst Exponent 

In our study we use model (15) by letting φ  = 0 and we draw tZ  from a 

normal distribution with mean 0 and variance 1. To determine the distribution 

properties of the Hurst exponent, we simulate 128 values of random data for a 

time series.  For each data set, the Hurst exponent H is estimated using SR /  

analysis.  500 values of the Hurst exponent were recorded.  The random data 

were generated using the SAS rannor() function.  The function generates a 

randomly chosen value for a normally distributed variable with population mean 

of 0 and standard deviation of 1.   

           The Capability Procedure Proc Capability (Cody and Smith, 1997) 

applied to the data set of the values of the Hurst exponent produces the Shapiro-

Wilk, Kolmogorov-Smirnov, and the Anderson-Darling tests for normality.  The 

p-values of the tests were recorded.  Also, the Histogram and the Normal 

Probability plot were generated to test for normality of the data.  Both of these 

techniques are visual assessments of normality, rather than formal tests of 

normality. The results are as follows: 

 

Histogram                              

Figure 4: Histogram 
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The histogram in Figure (4) suggests that the Hurst exponent is normally 

distributed. 

 

Normal Probability Plot 

Figure (5) is the Normal Probability plot.  The plotted points show a strong 

linear pattern suggesting that the Hurst exponent is normally distributed.   
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Figure 5:  Normal Probability Plot 

 
Goodness-of-Fit Tests 

Table 2 shows the values of different statistics for testing normality.  The table 

is obtained from SAS output. 

Table 2.  Test for Normality, Test Statistic, and p-Value. 

 

Test Statistic Value p-value 

Shapiro-Wilk W 0.997 0.404 

Kolmogorov-Smirnov D 0.021 0.150 

Anderson-Darling A-Sq 0.243 0.250 

 

The p-values of the Shapiro-Wilk, Kolmogorov-Smirnov, and the 

Anderson-Darling Tests are greater than the significance level α  = 0.05.  So we 

don’t have sufficient evidence to reject the null hypothesis and we can say that 

the data are normally distributed.   

 

  Summary 

 

 To study the distribution properties of Hurst Exponent simulations 

were conducted to randomly generate data values of several Time Series from a 

normal distribution.  Rescaled Range Analysis performed on each of the 

generated Time Series estimated the values of Hurst Exponents.  Tests for 

normality were conducted to check if the estimated values of Hurst Exponents 

were also normally distributed.  The tests included Goodness-of-Fit Tests and 

visual tools such as Histograms and Normal Probability Plots.  It was observed 

that if Time Series are randomly generated from a normal distribution, then, the 

estimated Hurst Exponents are also normally distributed.    Future work will 

involve the study of distribution properties of Hurst Exponent for a random walk 

model for a Time Series.  That is, a stationary series { }tX  satisfying: 
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ttt ZXX += −1 ,  t = ,,1 �±  

Also, distribution properties of Hurst Exponent for a stationary model will be 

studied.  A stationary series { }tX  satisfies: 

ttt ZXX += −1φ ,  t = ,,1 �±
 
where 1|| <φ .  
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