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Abstract 

 
 Boolean algebra has very important applications in computer digital 

design. In this paper, we have investigated the structure of general finite 

Boolean Algebra and proved that the size of a Boolean Algebra is 2
n
 for some 

positive integer n and two finite Boolean Algebras are isomorphic if and only if 

they have the same size. 

  

Introduction to Boolean Algebra 

 

Boolean algebraic structure was firstly introduced by George Boole in 

1854 [1]. The following definition was proposed by Edward V. Huntington [2].   

Let B be a set having two operators + and ⋅ satisfying the following conditions: 

1. B is commutative under operators + and ⋅, i.e.  

∀x, y ∈B, x+ y= y+x and x⋅ y= y⋅ x. 

2. B is associative under operators + and ⋅, i.e.  

∀x, y, z∈B, (x+ y) + z = x+(y+ z) and (x⋅ y)⋅ z = x⋅( y⋅ z). 

3. B has identity elements 0 with respect to +, i.e. ∀x∈B, x+ 0 = x. 

B has identity elements 1 with respect to ⋅, i.e. ∀x∈B, x⋅ 1 = x. 

4. Operator ⋅ is distributive over operator +, i.e.  

∀x, y, z ∈B, x⋅(y + z)= x⋅ y + x⋅z.  

Operator + is distributive over operator ⋅, i.e.  

∀x, y, z ∈B, x+ (y⋅z)= (x+ y)⋅(x + z). 

5. ∀x∈B, ∃ x'∈B (called the complementary element of x) such that 

 x+ x'=1 and   x⋅ x'=0.  

then {B, +, ⋅} is called a Boolean Algebra. 

Notes:  

1. The following properties can be derived from the above definitions 

Property 1: ∀x∈B,  x + x = x. 

Property 2: ∀x∈B,  x⋅x = x. 

Property 3: ∀x∈B,  x + 1 = 1. 

Property 4: ∀x∈B,  x⋅0 = 0. 

Property 5: ∀x∈B,  x' is unique and (x' )' = x. 

Property 6: ∀x, y∈B,  (x + y)' = x' ⋅ y'. 

Property 7: ∀x ,y∈B,  (x ⋅ y)' = x' + y'. 

Property 8: ∀x, y∈B,  x + x⋅y = x. 

Property 9: ∀x ,y∈B,  x⋅(x + y) = x. 

The detail proofs can be found in [3].  

2. There are no inverse operators for both + and ⋅ in a Boolean Algebra, 

3. Let B1, B2 be two Boolean algebras. If there exists a 1-1 mapping φ from B1 

onto B2 such that φ keeps operations, i.e. ∀x, y ∈B1,  
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φ( x+ y)= φ( x)+ φ( y), φ( x⋅ y) = φ( x) ⋅ φ( y), and φ( x') = [φ( x)]',  

then B1 is called isomorphic to B2 ,  φ is called an isomorphism from B1 to B2. 

 

Examples: 

1. Let B be a two elements set {true, false}. Let the operator + be the logic 

operator OR and operator ⋅ be the logic operator AND. The {B, OR, AND} 

is a Boolean Algebra. 

2. Let B be the set of all subsets of a set U. Let the operator + be the set 

operator union ∪ and operator ⋅ be the set operator intersection ∩. Then {B, 

∪, ∩} is a Boolean Algebra. 

 

Some Lemmas 

 

Definition of minimal element:  

Let B be a Boolean Algebra and let e be a non-zero element of B. If ∀x∈B 

and x≠1 and x≠e, we always have x⋅e=0, then e is called a minimal element of B. 

Note: A Boolean Algebra may have more than one minimal elements. 

 

Lemma 1: If e is a minimal element of Boolean algebra B, then ∀x∈B,  

either  x⋅e = 0  or  x⋅e = e. 

This is because if x⋅e ≠ 0, then either x=1 or x=e, therefore x⋅e = e. 

 

 

Definition of partial relation <:  

Let x, y be two distinct non-zero elements of a Boolean Algebra B. If x⋅y = 

x, then we say x<y or x is smaller than y. 

Note: Two elements of a Boolean algebra may not have smaller relation < at all. 

 

Lemma 2: Let x<y<z be three elements of a Boolean algebra, then x< z. 

Proof: If x = z, then x=x⋅y=z⋅y=y. It is a contradiction to x<y. So we have x ≠ z. 

Moreover, x=x⋅y= x⋅(y⋅z) = (x⋅y) ⋅z = x⋅z. Therefore we have x <z. 

 

Lemma 3: Let B be a finite Boolean algebra, then minimal element exists.  

Proof: If the size of B is 2, then 1 is a minimal element. Now assume the size of 

B>2, so there exists an element x of B such that x≠1, 0. If x is not a minimal 

element of B, then there exists an element y of B such that x⋅y≠x and x⋅y≠0. 

Define x2= x⋅y. Because x2≠ x and x⋅x2 = x⋅(x⋅y) = (x⋅x)⋅y= x⋅y= x2, we get x2<x. 

If x2 is not minimal, we can use the same way to find x3≠0 such that x3<x2. If x3 

is not minimal, then we can continue to find smaller element x4. If each step 

cannot yield a minimal element, we always can find a new smaller element by 

the above construction. From lemma 2, those constructed elements are all 

different. However, the size of B is finite; the above constructing procedure 

must be end after finite steps and yield a minimal element. 

Note:  

1. If the size of B is 2, then 1 is its only one minimal element.   
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2. If size of B > 2, then we have an element x≠1, 0. From the above proof, we 

can find a minimal element a small than x. However, we also can find 

another minimal element b smaller than x'. Then 

a⋅b= (a⋅x) ⋅(b⋅x') = 0. 

 So a and b are different and the count of minimal elements is ≥2. 

 

Lemma 4: Let B be a finite Boolean algebra and e1, e2 , e3, . . . , en be all its 

minimal elements, then e1+e2 + e3+…+ en  = 1. 

Proof: If the size of B is 2, then 1 is its only one minimal element and the 

theorem holds. If the size of B>2, then n≥2. Let y = e1+e2 + e3+…+ en. If y ≠ 1, 

then y'≠ 0. From the proof of Lemma 3, there exists a minimal element x< y'. If 

x= ek  for some k ( 1 ≤ k ≤ n) , then 

ek= ek⋅ek = ek⋅x = ek⋅(x⋅y')= ek⋅x⋅( e1+e2 + …+ en) ' = ek⋅x⋅( e1' ⋅e2' ⋅… ⋅ en')=0. 

This is a contradiction to the definition of the minimal element. Therefore we 

have  e1+e2 + e3+…+ en  = 1. 

 

Lemma 5: Let B be a finite Boolean algebra and let e1, e2 , e3, . . . , en be all 

minimal elements of B. Then every element x of B has a unique linear 

expression 

    x = c1⋅e1+ c2⋅e2 + c3⋅e3+ …+cn⋅en,  

where either ck = 0 or ck = 1 for each k (1 ≤ k ≤ n). 

Therefore any element of B is a unique sum of several minimal elements. 

Proof: Let e1, e2 , e3, . . . , en be all minimal elements of B. Then from Lemma 4 

∀x∈B,  x = x ⋅1 = x⋅( e1+e2 + e3+ …+ en) = x⋅e1+ x⋅e2 + x⋅e3+ …+ x⋅en.  

From Lemma 1, x⋅ ek = 0 or x⋅ ek= ek for each k (1 ≤ k ≤ n). So x is a sum of 

several minimal elements and has expression 

    x = c1⋅e1+ c2⋅e2 + c3⋅e3+ …+cn⋅en.  

where ck = 0 or ck = 1 for each k (1 ≤ k ≤ n). 

If x has another expression 

    x = d1⋅e1+ d2⋅e2 + d3⋅e3+ …+dn⋅en.  

where either dk = 0 or dk = 1 each k (1 ≤ k ≤ n). 

Then   c1⋅e1+ c2⋅e2 + c3⋅e3+ …+cn⋅en= d1⋅e1+ d2⋅e2 + d3⋅e3+ …+dn⋅en. 

For each k (1 ≤ k ≤ n),  

ek⋅(c1⋅e1+ c2⋅e2 + c3⋅e3+ …+cn⋅en)= ek⋅( d1⋅e1+ d2⋅e2 + d3⋅e3+ …+dn⋅en). 

Then we get      ck⋅ek =dk⋅ek   

Because ck and dk are either 0 or 1, they must be the same. 

Therefore the expression is unique. 

 

Main Theorems 

 

Definition of Boolean Algebra Bn: 

Let n>0 be an integer. Define set Bn as the set like the following: 

   Bn={ (a1, a2 , a3, …, an)}, 

where ak is integer 0 or 1 for each k (1 ≤ k ≤ n). 

Define operators +, ⋅ and complementary operator ' in Bn as the following:  
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∀x, y ∈ Bn , write 

x= (a1, a2 , a3, …, an),  y= (b1, b2 , b3, …, bn), 

Define  x+y = (a1+ b1, a2+ b2, a3+ b3, …, an+bn), 

where the operation rule for each component is  0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 1. 

Define  x⋅y = (a1b1, a2b2, a3b3, …, anbn), 

where the operation rule for each component is the regular multiplication   

Define  x' = (1 − a1, 1 − a2 , 1 − a3, …, 1 − an),  

where the operation rule for each component is the regular subtraction. 

Then we can verify that Bn is a Boolean algebra. We omit the detail verification 

process here. 

 

Now we have our main theorems: 

Theorem 1: Every finite Boolean Algebra is isomorphic to a finite Boolean 

Algebra Bn for some integer n>0. 

Proof: Let B be a finite Boolean algebra and let e1, e2 , e3, . . . , en be its all 

minimal elements of B. From lemma 5, ∀x ∈ B, x has a unique linear expression 

    x = c1⋅e1+ c2⋅e2 + c3⋅e3+ …+cn⋅en.  

where ck = 0 or ck = 1 for each k (1 ≤ k ≤ n). 

Then define a mapping φ: Β→ Bn as the following: 

    φ(x) = (a1, a2 , a3, …, an)  

where ak = 0 if ck = 0 and ak = 1 if ck = 1 for each k (1 ≤ k ≤ n). 

If we accept the elements 1 and 0 in B as integers in Bn , we can simply define 

    φ(x) = (c1, c2 , c3, …, cn) 

It is obviously the mapping φ is 1-1 and onto. 

Moreover, because for each k (1 ≤ k ≤ n) 

   ek +0 = ek,   ek +ek = ek,  ek ⋅0 = ek,   ek ⋅ek = ek, 

we can verify that ∀x, y ∈ B  

φ( x+ y)= φ( x)+ φ( y)  and  φ( x⋅ y) = φ( x) ⋅ φ( y) 

This is because the elements on both sides of the equations have exactly the 

same coordinate expressions. 

Also it is easy to verify that 

 φ( x') = [φ( x)]',  

We omit the detail verification steps here too. 

Therefore B is isomorphic to Bn for some integer n>0 

 

Theorem 2: The size of any finite Boolean Algebra is 2
n
 for some positive 

integer n. 

Proof: We only need to calculate the size of Bn for integer n>0. 

There is only one element in Bn having all ones as its component values. 

For integer k (1 ≤ k ≤ n). there are 
n

k

 

� �
� 	

elements in Bn having k zeros as their 

component values. Therefore the size of Bn is  

   
1 2 3

1 ... 2nn n n n

n

 
  
  
  

� � � � � � � �
� 	 � 	 � 	 � 	

+ + + + + = . 
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Corollary: Two finite Boolean Algebras are isomorphic if and only if they have 

the same size. 

  

† Delin Tan, Ph.D., Southern University of New Orleans, USA 
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