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Commutativity in Permutation Groups 
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Abstract 

 In the group Sym(S) of permutations on a nonempty set S, fixed points 
and transient points are defined. Preliminary results on fixed and transient points 
are developed. Disjoint permutations and disjoint collections of permutations are 
then defined in terms of transient points. Several commutativity results for 
disjoint permutations are established. 

Introduction 

 Most relevant texts define the notions of permutations, cycles, and 
disjoint cycles on a nonempty set. A commutativity result regarding 
permutations is then presented. However, the degree of generality of this result 
varies substantially.  
 For example, some texts define permutations only on finite sets [1, p. 92, 
Definition 2.15]. Furthermore, the term disjoint is defined only for pairs of 
cycles, but not for permutations in general [1, p. 95]. Thus the corresponding 
commutativity result is restricted to the observation that disjoint pairs of cycles 
in nS  commute, where n is a positive integer and nS  is the group of 
permutations on n elements [1, p. 95].  
 Other texts extend the definition of permutations to an arbitrary nonempty 
set S ([2, p. 38],[3, p. 77],[4, p. 18]), but define cycles only for nS  on finite sets, 
and not for Sym(S) in general ([2, p. 40],[3, p. 80],[4, p. 131]). As before, the 
term disjoint is defined only for pairs of cycles ([2, p. 41],[3, p. 81],[4, p. 131]). 
Consequently, the commutativity result obtained is restricted as above to the 
statement that disjoint pairs of cycles in nS  commute ([2, p. 41],[3, p. 82, 
Theorem 6.2],[4, p. 131, Lemma 3.2.1]).  
 Still other texts also use the more general definition of a permutation on 
an arbitrary nonempty set [5, p. 26] while restricting the definition of cycles to 
finite sets [5, p. 46, Definition 6.1]. However, the term disjoint is applied to 
general permutations rather than being limited to cycles, and is even extended to 
finite collections of permutations, but is limited to permutations in nS  on a finite 
set [5, p. 47, Definition 6.2]. Furthermore, the related commutativity result is 
still restricted to pairs of permutations in finite collections only, and is not 
extended to include arbitrary collections or even finite collections of 
permutations as a whole. Thus the commutativity result stated is that disjoint 
pairs of permutations in nS  commute [5, p. 47]. 
 Finally, some texts define both permutations [6, p. 30] and cycles [6, p. 
79] on arbitrary nonempty sets. The term disjoint is defined for arbitrary 
collections of cycles [6, p. 79], but not for arbitrary collections or even pairs of 
general permutations. Once again, however, the corresponding commutativity 
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result refers only to pairs of cycles, stating that disjoint pairs of cycles in Sym(S) 
commute [6, p. 79, no. 10]. 
 Each of these sources restricts the term disjoint to either pairs of 
permutations, cycles only, permutations on a finite set, or some combination of 
these. Consequently the commutativity result produced is limited in one way or 
another in each case. This paper generalizes these results in all three aspects by 
extending the term disjoint to apply to arbitrary collections of general 
permutations on any nonempty set. The corresponding result on commutativity 
is then developed in this more general framework. Throughout this paper it is 
assumed that S is a nonempty set. 

Preliminary Results 

 We begin with some basic definitions pertinent to all of the following 
results. The initial definitions of permutations, Sym(S), nS , cycles, and the 
identity map on S are standard, and are included here for completeness. 

Definition 1: If S is a nonempty set, then a permutation (or symmetry)  on S is 
a 1-1, onto function :S S. The set of all permutations on S is denoted by 
Sym(S). If S is a finite set of order n then Sym(S) will be written nS , and is 
called the set of permutations on n elements. In this case S can be represented as 
S = n

1kk . If n is a positive integer, then a permutation Sym(S) is a cycle of 

length n if and only if there is a finite subset n
1iia  of S such that 1ii a)a(

for 1  i  n 1, )a( n  = 1a , and (x) = x for each x S n
1iia . In this case we 

write  = n21 a,,a,a . The identity map on S is denoted by S1 .

 It is commonly known that Sym(S) endowed with the operation of 
composition of functions is a group [2, p. 38, Theorem 6.1], called the group of 
permutations on S. It is also well known that Sym(S) is nonabelian when S  3 
([1, p. 94, Theorem 2.20],[2, p. 40, Theorem 6.3]). Therefore any nontrivial 
result on commutativity in permutation groups is significant. In order to achieve 
the goal of this paper, we need the standard concept of fixed points, along with a 
contrasting notion of transient points. Thus we have the following definitions. 

Definition 2: Suppose S is a nonempty set, p,q S, and Sym(S). Then p is a 
fixed point of  if and only if (p) = p; q is a transient point of  if and only if 

(q)  q. The set of fixed points of  is F  = x)x(Sx . In contrast, the 

set of transient points of  is T  = x)x(Sx .

 For each Sym(S), it is clear that S F  = T  and S T  = F .
Consequently, if F  and T  are nonempty, then T,F  partitions S. We 
formally state these facts in the following result. 
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Corollary 3: Suppose Sym(S). 
(a) F  and T  are set complements of each other relative to S. 
(b) If F  and T  are nonempty, then T,F  is a partition of S. 

Proof:  
(a) It is clear from Definition 2 that F  S and T  S. Furthermore, for 
each x S, x F  if and only if (x) = x if and only if x T . The result follows. 
(b) The result is an immediate consequence of part (a). 

 Part (a) of Theorem 4 could be stated biconditionally. However, a 
stronger version of the converse of part (a) exists, and is stated separately in part 
(b). In this manner, the hypothesis in part (b) assumes only that )x(n F  for 
some integer n, rather than for each integer n. Consequently the result of the 
converse of part (a) is obtained using a weaker hypothesis. Parts (a) and (b) are 
then combined to verify the result in part (c). 

Theorem 4: Suppose Sym(S) and x S.  
(a) If x F , then )x(n F  for each integer n.  

(b) Conversely, if )x(n F  for some integer n, then x F .

(c) If )x(n F  for some integer n, then )x(n F  for each integer n. 

Proof:  
(a) If x F , then (x) = x by Definition 2. Thus for each integer n, n (x) S

and [ )x(n ] = )x(1n  = n [ (x)] = )x(n . Hence )x(n F  by 
Definition 2. 

(b) If )x(n F  for some integer n, then [ )x(n ] = )x(n  according to 

Definition 2. Furthermore n  = 
1n Sym(S). Therefore (x) = )x(1nn

= n [ )x(1n ] = n ( [ )x(n ]) = 
1n [ n (x)] = )x(n1n  = )x(1S  = 

x. Hence x F  by Definition 2. 

(c) If )x(n F  for some integer n, then x F  by part (b). Since x F

then )x(n F  for each integer n by part (a). 

 Transient points have properties analogous to those in Theorem 4 for 
fixed points. In order to establish these properties, we apply Corollary 3 and 
Theorem 4. 
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Corollary 5: Suppose Sym(S) and x S.  
(a) If x T , then )x(n T  for each integer n.  

(b) Conversely, if )x(n T  for some integer n, then x T .

(c) If )x(n T  for some integer n, then )x(n T  for each integer n. 

Proof:  
(a) If x T , then x F  by Corollary 3. Therefore )x(n F  for each integer 

n by (the contrapositive of) Theorem 4(b). Hence )x(n T  for each integer n 
by Corollary 3. 

(b) If )x(n T  for some integer n, then )x(n F  by Corollary 3. Thus 
x F  by (the contrapositive of) Theorem 4(a). Hence x T  by Corollary 3. 

(c) If )x(n T  for some integer n, then x T  by part (b). Since x T

then )x(n T  for each integer n by part (a). 

 Analogous special cases of Theorem 4 and Corollary 5 will be useful. 
More specifically, parts (a) and (b) of Theorem 4 and Corollary 5 are each 
condensed to a single biconditional statement for the case in which n = 1. Thus 
we have the following corollary. 

Corollary 6: Suppose Sym(S) and x S.  
(a) Then x F  if and only if (x) F .
(b) Furthermore, x T  if and only if (x) T .

Proof:  
(a) If x F , then (x) F  by Theorem 4(a) with n = 1. Conversely, if 

(x) F , then x F  by Theorem 4(b) with n = 1. 

(b) If x T , then (x) T  by Corollary 5(a) with n = 1. Conversely, if 
(x) T , then x T  by Corollary 5(b) with n = 1. 

 Alternatively, x T  if and only if x F  (by Corollary 3) if and only if 
(x) F  (by part (a)) if and only if (x) T  (by Corollary 3). 

 We now present the definitions of disjoint permutations, disjoint cycles, 
and disjoint collections of permutations in Definition 7. These concepts are 
defined in terms of transient points, and are crucial to obtaining the main results 
on commutativity. 
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Definition 7: Suppose , Sym(S). Then  and  are disjoint if and only if 
T T  = . In particular, if  = k1 a,,a  and  = m1 b,,b  are cycles in 
Sym(S), then  and  are disjoint if and only if ia jb  for each i and j such 
that 1  i  k and 1  j  m. A collection C of permutations in Sym(S) is disjoint 
if and only if  and  are disjoint for each , C such that .

 The last part of Definition 7 raises the question of whether or not a 
permutation can be disjoint with itself. That is, if S is a nonempty set and 

Sym(S), are  and  disjoint? We resolve this issue with the following 
corollary.

Corollary 8: Suppose Sym(S). Then  is disjoint with itself (that is,  and 
are disjoint) if and only if  = S1 .

Proof: Since S1 (x) = x for each x S then 
S1F  = S by Definition 2, so 

S1T  =  by 

Corollary 3. Therefore 
S1T

S1T  = , so that S1  is disjoint with itself according 

to Definition 7. However, if S1  then there exists x S such that (x)  x. 
Thus x T  by Definition 2, so that T . Consequently T T  = T ,
and so  is not disjoint with itself. 

Main Results 

 The most common commutativity result for permutations found in 
literature states that disjoint pairs of cycles in nS  commute ([2, p. 41],[3, p. 82, 
Theorem 6.2],[4, p. 131, Lemma 3.2.1]). The following theorem generalizes this 
statement in two ways. The result for disjoint cycles is extended to disjoint 
permutations in general. Furthermore, the restriction to permutations in nS  on a 
finite set containing n elements is generalized to permutations in Sym(S) on an 
arbitrary nonempty set S. 

Theorem 9: Suppose , Sym(S). If  and  are disjoint, then  = .

Proof: If  and  are disjoint permutations in Sym(S), then T T  =  by 
Definition 7. Furthermore, for each x S, either x T , x T , or 
x S ( T T ). However, S ( T T ) = (S T ) (S T ) = F F  by 
Corollary 3. 
 If x T  then (x) T  by Corollary 5(a) (or Corollary 6(b)). Then 
x, (x) T  since T T  = . Therefore x, (x) F  by Corollary 3, so that 

(x) = x and [ (x)] = (x) by Definition 2. Thus (x) = [ (x)] = (x) = 
[ (x)] = (x). Similarly, if x T  then (x) = (x). Finally, if x F F ,
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then (x) = x and (x) = x by Definition 2. Therefore (x) = [ (x)] = (x) = 
x = (x) = [ (x)] = (x).  
 Consequently (x) = (x) for each x S. Hence  = .

 In the proof of Theorem 9, DeMorgan’s Laws and Corollary 3 were used 
to show that S ( T T ) = F F . A similar application of these two results 
provides a slightly different perspective on the result of Theorem 9. More 
specifically, the same commutativity result established in Theorem 9 can be 
obtained by a relationship between the sets of fixed points of permutations rather 
than their respective sets of transient points. 

Corollary 10: Suppose , Sym(S). If F F  = S, then  = .

Proof: Note that F F  = S if and only if S ( F F ) =  if and only if 
(S F ) (S F ) =  if and only if T T  =  (by Corollary 3) if and only if 

 and  are disjoint (by Definition 7). Thus if F F  = S, then  and  are 
disjoint. Hence  =  by Theorem 9. 

 Theorem 9 extended the common commutativity result for pairs of cycles 
in nS  on a finite set to the same result for pairs of general permutations in 
Sym(S) on an arbitrary nonempty set. We now generalize the third aspect of this 
result for disjoint pairs of permutations in Sym(S) by extending it to include 
disjoint collections of permutations in Sym(S). 

Corollary 11: If C is a disjoint collection in Sym(S), then  =  for each 
, C.

Proof: Suppose C is a disjoint collection in Sym(S) and , C. Therefore either 
 =  or  and  are disjoint by Definition 7. If  = , then clearly  = .

Otherwise  and  are disjoint, and so  =  by Theorem 9. 

Concluding Remarks

 It should be noted that the converse of Theorem 9 is not true. That is, if 
, Sym(S) and  = , then it is not necessarily true that  and  are 

disjoint.  
 For a simple example, suppose that S  1 and S1 . Clearly  (like 
any permutation) commutes with itself. However,  is not disjoint with itself by 
Corollary 8. 
 Furthermore, the converse of Theorem 9 is false even in the case of 
distinct permutations on a finite set. For example, suppose S = {1,2,3,4}, 
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, 4S ,  = 
4312
4321

, and  = 
3412
4321

. Therefore  = 

3421
4321

 = . However, T  = {1,2} and T  = {1,2,3,4}. Therefore 

T T  = {1,2} , so that  and  are not disjoint by Definition 7. 
 Counterexamples also exist with permutations on infinite sets. Suppose R
is the set of real numbers, n is an odd integer, and n  3. Define (x) = nx  and 

(x) = n x  for each x R. Therefore , Sym(R) and (x) = x = (x) for 
each x R, so that  = . However, F  = F  = {0,1, 1}, so that T  = T  = 
R {0,1, 1} by Corollary 3. Hence T T  = R {0,1, 1} , and so  and 
are not disjoint according to Definition 7. 

† Richard Winton, Ph.D., Tarleton State University, Texas, USA 
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