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Abstract 
 
 Cryptosystems may be classified as either public or private key. The 
system developed in this paper combines the protocols of these two types of 
cryptography to produce a three-pass system that is more secure than with either 
one alone. Each transmission in the correspondence protocol is at least doubly 
encrypted. Furthermore, a digital signature is employed. Finally, recent 
advances in number theory provide a greater computational efficiency than 
exists in similar previously established systems. 
 

Introduction 
 
 In 1978 Ronald Rivest, Adi Shamir, and Leonard Aldeman produced the 
RSA public key cryptosystem ([9],[10]) based on Euler’s Theorem. The first 
private key, three-pass system was developed by Adi Shamir around 1980 ([4, p. 
345],[7, p. 535]). Also known as Shamir’s no-key protocol [7, p. 535], this 
system requires three transmissions to complete the transfer of information to 
the recipient in a form that can be successfully deciphered [7, p. 500, no. 12.22]. 
In 1982 James L. Massey and Jim K. Omura produced the Massey-Omura 
private key cryptosystem ([5, p. 174],[6]) whose mathematical basis is Fermat’s 
Theorem. Thought to be an improvement over the Shamir three-pass system, the 
Massey-Omura Cryptosystem is a private key, three-pass, exponential system 
which uses a prime modulus. By the late 1980’s these three-pass systems were 
eventually developed into three-pass, zero-knowledge protocol systems 
([2],[3],[8, pp. 255-256]). In 2007 Richard A. Winton [12] developed two 
cryptosystems which improved the security of the Massey-Omura system.  
 The Enhanced Massey-Omura 1 (EMO-1) Cryptosystem [12] is a private 
key, three-pass system which replaced the prime modulus of the Massey-Omura 
system ([5, p. 174],[6]) with a composite modulus to increase the difficulty of 
cryptanalysis. Also a three-pass system, the Enhanced Massey-Omura 2 (EMO-
2) Cryptosystem [12] combined the private key protocols of the Massey-Omura 
and EMO-1 systems with the public key protocol of the RSA system. As a 
result, EMO-2 protocol increased the security of the Massey-Omura and EMO-1 
systems by providing double encryption on each transmission, as well as a 
digital signature [11, p. 300] which enables the recipient of an encrypted 
transmission to authenticate the identity of the sender. 
 

The Winton Cryptosystem 
 
 Similar to the EMO-2 Cryptosystem [12], the Winton Cryptosystem is a 
partially private key, partially public key three-pass system which combines the 
methods of the EMO-1 and RSA systems. Furthermore, its correspondence 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 7 No. 1      2 

protocol is based primarily on that of the EMO-2 Cryptosystem. However, the 
Winton Cryptosystem contains characteristics which make it both more secure 
and more efficient than the EMO-2 system. 
 Although each transmission in the EMO-2 Cryptosystem [12] is doubly 
encrypted, the security of the transmissions does present a small risk in the fact 
that the key center knows all of the cryptological parameters and keys of the 
system. Thus an unscrupulous employee at the key center could read the 
messages of the network members, or could even sell knowledge of these keys 
to others. The Winton Cryptosystem addresses this vulnerability by ensuring 
that each of the transmissions in the three-pass correspondence protocol is 
secured with a cryptological lock to which only the recipient holds the key. 
Furthermore, even though the key center has the keys with which each 
transmission is encrypted, the decryption key not known to the key center in 
each transmission cannot be calculated with the parameters known to the key 
center. In this manner the multiple encryption and digital signature provided by 
the EMO-2 system are maintained, but the key center is unable to decipher any 
of the transmissions in the three-pass protocol. 
 Finally, the encryption and decryption processes of both the EMO-1 and 
EMO-2 Cryptosystems [12] are based on Euler’s Theorem. Consequently these 
systems have a somewhat limited computational efficiency. However, Richard 
A. Winton established results in 2009 [13] which allow the Winton 
Cryptosystem to operate with a greater computational efficiency than the EMO-
1 and EMO-2 systems.  
 The sources of the improvements discussed above will be revealed 
shortly. First, however, the details of the system structure and correspondence 
protocol of the Winton Cryptosystem must be presented. 
 

System Structure 
 

 In order to construct a Winton Cryptosystem for a network of 
correspondents, the key center first performs the following functions. 
 
1. An alphabet A is selected. 
2. A maximum message length of N alphabet characters is determined. 
3. A scheme S is determined to convert alphabetic messages to unique  
 positive integers in a one-to-one correspondence and vice versa. 
4. The largest integer L which can represent a message is determined based  
 on the alphabet A, the maximum message length N, and the scheme S. 
5. Distinct primes p and q are selected such that pq > L.  
6. The network modulus n = pq > L and φ(n) = (p−1)(q−1) are computed. 
7. For each network member, a least residue iw  modulo φ(n) is selected as  
 a primary encryption key such that { })n(,wgcd i φ  = 1. 

8. For each primary encryption key iw , ix  = 1
iw− (mod φ(n)) is computed as  

 a primary decryption key.  
9. Each network member is provided with their individual primary encryption  
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 and decryption keys iw  and ix , respectively. 
10. The parameters A, N, S, L, and n are published in the center directory.  
 On the other hand, iw  and ix  are private keys, and are thus known only  
 to the key center and the network member to whom they are assigned. 
 
 After the functions above are performed by the key center, each network 
member individually performs the following functions. 
 
11. Each member selects distinct primes ip  and iq  such that iiqp  > n. 
12. Each member computes their own personal modulus in  = iiqp  > n and  

 )n( iφ  = )1q)(1p( ii −− . 
13. Each member selects a least residue iy  modulo )n( iφ  as a secondary  
 encryption key such that iy  ≠ iw , iy  ≠ ix , and { })n(,ygcd ii φ  = 1. 

14. Each member computes iz  = 1
iy− (mod )n( iφ ) as a secondary decryption  

 key. 
15. Each member publishes their encryption key iy  and modulus in  in the  
 key center directory, keeping the decryption key iz  private. 
 
 Thus the parameters published in the key center directory include A, N, S, 
L, n, { }in , and { }iy . Furthermore, the key center knows p, q, φ(n), { }iw , and 

{ }ix . Each network member also knows their individual private keys iw , ix , 
and iz , as well as the parameters ip , iq , and )n( iφ . It is important to note that 
the key center does not know any of { }iz , { }ip , { }iq , and { })n( iφ . 
 

Correspondence Protocol 
 

 Suppose that Bob and Sue are members of a Winton Cryptosystem 
network with system modulus n. Suppose also that Bob has personal modulus  

in  = h and keys iw  = r, ix  = t, iy  = c, and iz  = b, while Sue has personal 
modulus jn  = k and keys jw  = u, jx  = v, jy  = e, and jz  = d. For Bob to send a 
message to Sue, the following protocol is observed. 
 
1. Bob constructs his message m using the alphabet A, not to exceed the  
 maximum message length N. 
2. Bob converts his alphabetic message m to its numerical equivalent M ≤ L  
 using the scheme S. 
3. Bob enciphers M by computing rM (mod n). 

4. Bob further enciphers M by computing ( )er )n(modM (mod k) and sends  
 the result to Sue. 
5. Sue partially deciphers the transmission by computing  
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 ( )[ ] )k(mod)k(mod)n(modM
der  = ( )edr )n(modM (mod k) = rM (mod n). 

  Since rM (mod n) < n < k, then )n(modM|k r/ . Therefore  

 ( )edr )n(modM (mod k) = ( ))n(modM r (mod k) since d = 1e− (mod φ(k))  

 [13, Corollary 10]. Furthermore, ( ))n(modM r (mod k) = rM (mod n)  

 since rM (mod n) < n < k. 

6. Sue adds encryption by computing ( )ur )n(modM (mod n) = ruM (mod n). 

7. Sue adds more encryption by computing ( )cru )n(modM (mod h) and sends  
 the result back to Bob. 
8. Bob partially deciphers the transmission by computing  

 ( )[ ] )h(mod)h(mod)n(modM
bcru  = ( )cbru )n(modM (mod h) = ruM (mod n). 

  Since ruM (mod n) < n < h, then )n(modM|h ru/ . Therefore  

 ( )cbru )n(modM (mod h) = ( ))n(modM ru (mod h) since b = 1c− (mod φ(h))  

 [13, Corollary 10]. Furthermore, ( ))n(modM ru (mod h) = ruM (mod n)  

 since ruM (mod n) < n < h. 
9. Bob further deciphers the transmission by computing  

 ( )tru )n(modM (mod n) = ( )rtuM (mod n) = uM (mod n). 

  Since M ≤ L < n, then M|n / . Therefore either M|p /  or M|q /  since  

 n = pq and p ≠ q. Thus either uM|p/  or uM|q / , and so uM|n / . Hence 

 ( )rtuM (mod n) = uM (mod n) since t = 1r− (mod φ(n)) [13, Corollary 10]. 
 

Case 1: h ≤ k 
 

10. Bob adds the digital signature by computing ( )bu )n(modM (mod h). 
11. Bob adds a layer of encryption by computing  

 ( )[ ] )k(mod)h(mod)n(modM
ebu  and sends the result to Sue. 

12. Sue partially deciphers the transmission by computing  

 ( )[ ] )k(mod)k(mod)h(mod)n(modM
debu
��

�
��

�  =  

 ( )[ ] )k(mod)h(mod)n(modM
edbu  = ( )bu )n(modM (mod h)  

 as in step 5 since d = 1e− (mod φ(k)) [13, Corollary 10] and  

 ( )bu )n(modM (mod h) < h ≤ k.  
13. Sue continues deciphering the transmission by computing  

 ( )[ ] )h(mod)h(mod)n(modM
cbu  = ( )bcu )n(modM (mod h) = uM (mod n)  
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 as in step 8 since c = 1b− (mod φ(h)) [13, Corollary 10] and  
 uM (mod n) < n < h.  
 

Case 2: h > k 
 

10. Bob adds a layer of encryption by computing ( )eu )n(modM (mod k). 
11. Bob adds the digital signature by computing  

 ( )[ ] )h(mod)k(mod)n(modM
beu  and sends the result to Sue. 

12. Sue partially deciphers the transmission by computing  

 ( )[ ] )h(mod)h(mod)k(mod)n(modM
cbeu
��

�
��

�  =  

 ( )[ ] )h(mod)k(mod)n(modM
bceu  = ( )eu )n(modM (mod k)  

 as in step 8 since c = 1b− (mod φ(h)) [13, Corollary 10] and  

 ( )eu )n(modM (mod k) < k < h. 
13. Sue continues deciphering the transmission by computing  

 ( )[ ] )k(mod)k(mod)n(modM
deu  = ( )edu )n(modM (mod k) = uM (mod n)  

 as in step 5 since d = 1e− (mod φ(k)) [13, Corollary 10] and  
 uM (mod n) < n < k. 
 

Protocol Completion 
 
14. In either case, Sue completes the deciphering process by computing  

 ( )vu )n(modM (mod n) = uvM (mod n) = M (mod n) as in step 9 since  

 v = 1u− (mod φ(n)) [13, Corollary 10]. Furthermore, M(mod n) = M  
 since M ≤ L < n. 
15. Sue then converts M to its alphabetic equivalent m using the scheme S  
 and reads Bob’s message. 
 
 The correspondence protocol of the Winton Cryptosystem is illustrated in 
Figure 1 below. Figure 1 corresponds to Case 1 in which h ≤ k. A similar 
flowchart can easily be constructed for Case 2 in which h > k. 
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                                         Figure 1 
 
Bob (h,r,t,c,b)  (h ≤ k) Sue (k,u,v,e,d) 
↓ 
m 
↓ 
M 
↓ 

rM (mod n) 
↓ 

( )er )n(modM (mod k)  → ( )er )n(modM (mod k) 

     ↓ 

     ( )edr )n(modM (mod k)= 

     rM (mod n) 
     ↓ 
     ruM (mod n) 
     ↓ 

( )cru )n(modM (mod h) ← ( )cru )n(modM (mod h) 

↓ 

( )cbru )n(modM (mod h)= ruM (mod n) 

↓ 
rutM (mod n)= uM (mod n) 

↓ 

( )bu )n(modM (mod h) 

↓ 

( )[ ] )k(mod)h(mod)n(modM
ebu  → ( )[ ] )k(mod)h(mod)n(modM

ebu  

     ↓ 

     ( )[ ] )k(mod)h(mod)n(modM
edbu = 

     ( )bu )n(modM (mod h) 

     ↓ 

     ( )bcu )n(modM (mod h)= 

     uM (mod n) 
    ↓ 
    uvM (mod n)=M 
    ↓ 
    m 
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Observations 
 
 The primary and secondary decryption keys ix  and iz  are calculated in 

steps 8 and 14 of the system structure, respectively. Note that in step 7 iw  is 

selected such that { })n(,wgcd i φ  = 1. Therefore iw  is an element of the group of 
units modulo φ(n) [1, p. 97, Example 3.1.4]. Consequently the existence and 
uniqueness of ix  = 1

iw− (mod φ(n)) is guaranteed [11, p. 139, Theorem 4.10]. A 

similar argument exists for iz  = 1
iy− (mod )n( iφ ). Furthermore, the 

computation of the decryption keys ix  and iz  can be achieved by using an 
extended version of the Euclidean Algorithm [11, p. 141, Example 4.15]. In fact, 
the same process verifies the existence of these keys before the computation is 
complete. 
 In steps 10 and 11, the sender Bob must choose in which order to apply 
the exponents b and e based upon whether h ≤ k or h > k. (Actually, if h = k then 
the order in which b and e are applied is irrelevant. However, the key center 
would not allow a situation in which h = k.) Note that the information necessary 
for making such a decision is available to Bob (and Sue as well) since the 
moduli h and k are published in the key center directory. In fact, the sender and 
recipient are each required to use both h and k in the three-pass correspondence 
protocol. 
 Similar to the EMO-2 Cryptosystem [12], the Winton Cryptosystem 
provides at least double encryption with each transmission in the three-pass 
protocol to make cryptanalysis by interceptors more difficult. It is noteworthy 
that triple encryption is provided in step 7 before Sue transmits to Bob. 
However, the exponentiations performed in steps 10 and 11 do not actually 
produce another triple encryption. Since h and c = 1b− (mod φ(h)) are published, 
it would be relatively simple for an interceptor who understood the system 
structure and protocol to remove the exponent b by applying the key c modulo h. 
Thus the exponentiation by b provides no real additional encryption. Instead, the 
exponent b serves as the digital signature by which Sue can verify Bob’s identity 
as the sender [11, p. 300]. For if Sue applies Bob’s public encryption key c and 
the results (after the rest of the deciphering process) yield readable text, then the 
message must have been previously encrypted by the sender with the exponent 
b. However, b is Bob’s private decryption key, which is known only to Bob. 
Consequently Bob must have sent the message. Hence Sue is able to 
authenticate Bob’s identity as the sender. 
 Also similar to the EMO-2 Cryptosystem [12], the primary keys assigned 
initially (r ant t for Bob; u and v for Sue) are used with the Massey-Omura 
protocol ([5, p. 175],[6]). However, the secondary keys assigned (c and b for 
Bob; e and d for Sue) are used with the RSA protocol ([5, p. 152],[9],[10]). 
 Each of the primary encryption keys ( iw  = r and jw  = u) used in each 

transmission has a corresponding decryption key known only to the key center 
and either the sender or recipient. Similar to the EMO-1 and EMO-2 systems 
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[12], only the key center has knowledge of p and q. Therefore, even though n is 
published, it is difficult to factor n = pq, and thus to compute φ(n) = (p−1)(q−1), 
for sufficiently large n. Consequently, even if a network member’s private 
primary encryption key, say jw , is discovered by an interceptor, the interceptor 

cannot compute the network member’s corresponding key jx  = 1
jw− (mod φ(n)) 

for decryption purposes. The key center, however, knows the keys { }ix , and can 

thus remove an encryption produced with the key jw . 

 In contrast, each of the secondary encryption keys ( iy  = c and jy  = e) 

used in each transmission of the three-pass protocol has a corresponding 
decryption key known only to the recipient of that specific transmission. 
Furthermore, ip  and iq  are known only to the network member who selects 

them. Thus even though in  is published, it is difficult for anyone else to factor 

in  = iiqp , and thus to compute )n( iφ  = ( ip −1)( iq −1), for sufficiently large 

in . Consequently, even with in  and iy  being published, iz  = ))n((mody i
1

i φ−  
cannot be computed for decryption purposes by anyone other than the network 
member to whom iz  is assigned. Hence none of the three transmissions can be 
deciphered by an interceptor, including the key center itself. This is the 
particular feature of the Winton Cryptosystem which addresses the weakness of 
the EMO-2 Cryptosystem security discussed above by making transmissions 
secure from cryptanalysis even by the key center. 
 Note that the multiple encryption and digital signature of the Winton 
Cryptosystem protocol is accomplished by successive exponentiations relative to 

different moduli. Furthermore, although [ ] )n(mod)n(moda
tr  ≡ )n(moda rt , in 

general we have [ ] )n(mod)n(moda 2
t

1
r  ≡/  [ ] )n(mod)n(moda 1

r
2

t . This 
potential problem with the decryption process is avoided by encrypting with 
sequential exponentiations in order of increasing corresponding moduli. 
 Finally, since decryption in the EMO-1 and EMO-2 Cryptosystems are 
based on Euler’s Theorem, then the prime factors p and q of the modulus n in 
those systems are selected so that if L is the largest possible numerical 
equivalent of a message, then p > L and q > L [12]. These conditions for p and q 
are necessary to guarantee that the numerical representation of any message is 
relatively prime with the modulus for the application of Euler’s Theorem during 
decryption. Consequently n = pq > 2L , requiring a relatively large modulus n. 
However, decryption in the Winton Cryptosystem uses results established in 
2009 by Richard A. Winton [13] rather than Euler’s Theorem. More specifically, 
the selection of p and q for the primary modulus n require only that n = pq > L 
([13, Theorem 8],[13, Corollary 10]). Hence the primary modulus n of the 
Winton Cryptosystem is on the order of the square root of the moduli of the 
EMO-1 and EMO-2 Cryptosystems. Furthermore, the same principle is applied 
to the selection of the primes { }ip  and { }iq  for the individual secondary moduli 
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{ }in . These smaller moduli allow the Winton Cryptosystem to operate with a 
greater computational efficiency than the EMO-1 and EMO-2 systems. 
 

Concluding Remarks 
 
 The results of Winton ([13, Theorem 8],[13, Corollary 10]) which 
improve the computational efficiency of the Winton Cryptosystem through the 
use of smaller moduli can also be applied in the same manner to enhance the 
efficiency of the EMO-1 and EMO-2 Cryptosystems [12]. However, unlike the 
Winton Cryptosystem, the key center would still have the ability to decipher 
transmissions encrypted by EMO-1 or EMO-2 protocol. 
 
† Richard Winton, Ph.D., Tarleton State University, Texas, USA 
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