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Abstract 

 
The intelligence of student groups is a topic of importance in mathematics 

education. The purpose of this work is to compare the intelligence of student 
groups in the van Hiele level theory of geometric thinking. The sample consists 
of 50 students in groups A, B and C with 20, 21 and 9 students respectively. All 
students have the same mathematical background. Since the ambiguity 
(aggregate possibilistic uncertainty) of student groups can be seen as the student 
group intelligence a measure of ambiguity is used to compare the student group 
intelligence in a geometric task. This work provides support for the strong effect 
of student group intelligence on student group performance which tends to 
diminish with diminishing intelligence. 

 
Background 

 
The van Hiele level theory of geometric thinking (Hoffer, 1983; van Hiele, 

1986; Wirszup, 1976) contains important pedagogical/ psychological concepts 
and is philosophically elegant. Its context is the study of student thinking 
processes in Euclidean geometry where geometric knowledge is manifested 
through five qualitatively different, hierarchical (Perdikaris,2011b) and 
continuous levels (Perdikaris, 2011a). The student geometric development is not 
a monotonous increase of knowledge but an expanding equilibration (Confrey, 
1994) and its aspects are argued by Battista (1994). 

A capsule version of the levels as suggested by Burger and Shaughnessy 
(1986) is as follows: 

 
Level 1 (Visualization). The student reasons about basic geometric concepts, 

such as simple shapes, primarely by means of visual considerations of 
the concept as a whole without explicit regard to properties of its 
components. 

 
Level 2 (Analysis). The student reasons about geometric concepts by means of 

an informal analysis of component parts and attributes. Necessary 
properties of the concept are established. 

 
Level 3 (Abstraction). The student logically orders the properties of concepts, 

forms abstract definitions, and can distinguish between the necessity 
and sufficiency of a set of properties in determining a concept. 
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Level .4 (Deduction). The student reasons formally within the context of a 
mathematical system, complete with undefined terms, an underlying 
logical system, definitions, and theorems. 

 
Level 5 (Rigor). The student can compare systems based on different axioms 

and can study various geometries in the absence of concrete models. 
 

This theory is based on the foundational ideas that all geometric knowledge 
rests on intuitive/exploratory experiences and thinking at a higher level is the 
result of thinking at lower levels. What is implicit at a level becomes explicit at 
the next level since, according to Freudenthal (1973), "the operational matter of 
the lower level bacomes a subject matter on the next level." The student learns 
to mathernatize, i.e., to organize the material by mathematical means 
(Perdikaris, 1996a). This van Hiele model of levels of geometric thinking has, 
according to Yazdani (2008), "implications not only for teaching and learning 
geometry but within other branches of mathematics and science as well." 

Student geometric thinking during acquisition of the van Hiele levels deals 
with the meaning of information which involves ambiguity, i.e., verbally 
expressed aggregate uncertainty of a higher type than fuzziness (Foster, 2011; 
Klir and Wierman, 1998). Ambiguity is the condition where the meaning of 
information has several distinct possible interpretations and results from words 
that mean many different things, like the word "democracy." 

A proper framework for analysis of the meaning of information that arises 
from thought processes and student cognition is possibility theory (Klir and 
Wierman, 1998; Zadeh,1978). This "soft" mathematical theory provides very 
natural and appropriate tools to model ambiguity since it is able to work in a 
pure qualitative way. It deals with the possible rather than the probable values of 
a variable with possibility being a matter of degree. Possibility can be identified 
by "compatibility" and linked with "difficulty." What is impossible must be 
improbable but whatever is possible need not be probable. This means that the 
degree of possibility always "'equals' or exceeds the degree of probability and a 
possibility distribution, which deals with the representation of meaning in 
natural languages, is not required to add up to 1. 

Klir and Folger (1988, p. 191) state that the uncertainty is viewed as the 
capacity to acquire knowledge by a communicative act of some sort and 
Bertrand Russell, in Weber (1960, p. 229), refers to the capacity to acquire 
knowledge as intelligence. Thus, the ambiguity (aggregate possibilistic 
uncertainty) of student groups can be considered as the student group 
intelligence. The aim of this work is to compare the intelligence of student 
groups in a geometric task using a measure of ambiguity. 
 

Methods and Procedures 
 

The present work uses the data in the alternative paradigm for evaluating 
the acquisition of the van Hiele levels in three-dimensional geometry (Gutierrez, 
Jaime & Fortuny, 1991). The sample consisted of 50 students in three groups A, 
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B and C with 20, 21 and 9 students respectively. All students had the same 
mathematical background. The authors tabulated the number of students 
attaining degrees of acquisition of each van Hiele level in Table 1. Notice that 
the first three van Hiele levels are considered since Level 4 rarely appears and 
Level 5 does not appear in secondary classrooms. 

The work of Gutierrez et al.(l99l) is a creation of human mind and can be 
considered as an object. The term "object" may be defined as part of the world 
distinguishable as a single entity for an appreciable length of time. An observed 
characteristic of this object is the "acquisition of a level." This characteristic is 
an ordinal scaled characteristic since it is possible to distinguish its values by 
their intensities and to rank these intensities. It is also a discrete characteristic 
because it has a finite number of different values, i.e., acquisition of Level 1, 
acquisition of Level 2 and acquisition of Level 3. 

These values, denoted by v1 , v2 and v3, respectively, are fuzzy variables 
because each one can be expressed by five fuzzy sets (states), i.e., no 
acquisition, low acquisition, intermediate acquisition, high acquisition and 
complete acquisition, (Perdikaris, 2011a, Zadeh, 1965). The fuzzy sets above 
may be denoted by a, b, c, d and e respectively. Thus, there is a fuzzy system on 
the object because a set of interactive fuzzy variables is distinguished on it. This 
is an overall fuzzy system since it represents, as a whole, all the fuzzy variables 
involved. The student groups A, B and C are the backdrops, i.e., some sort of 
background against which the fuzzy variables are observed. The analysis below 
follows a method of mathematical psychology (Klir & Folger, 1988, pp. 282-
285; Perdikaris, 2004). 

For each student group (each observation) there are three 5-tuples of 
numbers, one 5-tuple for each fuzzy variable v1, v2 and v3, and one number for 
each fuzzy set a, b, c, d and e (Table 2). The numbers are the membership 
degrees of the observed value of each fuzzy variable in the five fuzzy sets. For 
student group A, for example, the membership degree of the observed value of 
fuzzy variable v3 (acquisition of Level 3) in the fuzzy set b (low acquisition) is 
3/20. This, as it can be seen from Table 1, means that 3 of the 20 students of 
group A achieved low acquisition of Level 3. 

Possibility distribution is used to characterize the constraint among the 
variables v1, v2 and v3 of the overall fuzzy system. Membership degrees 
(pseudo-frequencies, i.e., frequencies that need not be whole numbers) of the 
overall states s (student profiles of acquisition of van Hiele levels) for student 
groups A, B and C are represented by mA, mB and mC and the corresponding 
possibility distributions by rA, rB and rC. All these are calculated using Table 2 
and shown in Table 3. Notice that each possibility distribution is normalized, 
i.e., its values are divided by its maximum value so that the maximum value 
becomes 1 regardless of the number of overall states. 

For each student group (each observation), the membership degree of an 
overall state s in Table 3 is calculated by taking the product of membership 
degrees of its components that are shown in Table 2. For student group A, fox 
example,  the membership degree of the overall state s = (e d a) is mA = 
(1)(6/20) (2/20) = 0.030 where 1 is the membership degree of the observed value 
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of fuzzy variable v1 (acquisition of Level 1) in the fuzzy set e (complete 
acquisition), 6/20 the membership degree of v2 (acquisition of Level 2) in the 
fuzzy set d (high acquisition) and 2/20 the membership degree of v3 (acquisition 
of Level 3) in the fuzzy set a (no acquisition). 

For each student group (each observation), the degree of possibility of an 
overall state s is calculated by taking the quotient of its membership degree to 
the maximum membership degree of the overall states. For student group A, for 
example, the degree of possibility of the overall state s = (e d a) is rA = 
0.030/0.150 = 0.200 where 0.030 is the membership degree of the overall state s 
= (e d a) and 0.150 is the maximum membership degree of the overall states in 
mA. 

Nonspecificity (imprecision) is a type of uncertainty that emerges 
whenever some alternative belongs to a set of alternatives but it is not known 
which one in the set it is. Strife (conflict) is a type of uncertainty that expresses 
conflicting distinctions of the meaning of information. In the past, the sum of the 
measures of nonspecificity and strife has been used as a measure of ambiguity, 
i.e., aggregate possibilistic uncertainty (Perdikaris, 2002; Voskroglou, 2009). 
However, its justification is questionable since these measures do not satisfy all 
requirements that are considered essential on intuitive grounds (Klir and 
Wierman, 1998). 

A well-justified measure of ambiguity that captures both nonspecificity and 
strife, the two types of uncertainty that coexist in possibility theory, is given by 
the function  
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which is a generalization of the classical Shannon entropy in possibility theory. 
Shis function is calculated by the Algorithm 3.2, using an ordered possibility 
distribution, l=r1� r2 ...�rn and rn+1 = 0 (Klir and Wierman, 1998, pp. 98-100). 

Consider, for example, the set X = {l,2, ... 12} and the normalized ordered 
possibility distribution rC= <1, 0.750, 0.500, 0.500, 0.500, 0.370, 0.370, 0.250, 
0.250, 0.245, 0.200, 0.125> in Table 3. The relevant values of (rj-ri+1)/(i+l-j) are 
listed in Table 4. For j=l and i = 3, for example, (r1-r4)/(4-1) = (1-0.500)/3= 
0.166. In the first pass (j = 1 and i = 1,2,..., 12) the maximum is reached at both i 
= 1 and i = 2. One takes the bigger value and puts p1 = p2  = 0.250. In second 
pass (j = 3 and i = 3,4,. ... ,12) the maximum is reached at both i = 7 and i = 12. 
One takes the bigger value and puts p3 = p4 = p5  = p6 = p7 = p8 = p9 = p10 = p11 = 
p12 = 0.050. Then 
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Similarly, the ambiguity (aggregate possibilistic uncertainty) of student groups 
A and B are 3.772 and 3.242 respectively. 
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Results and Conclusions 
 

This work uses results from "soft" mathematics (fuzzy sets, possibilities) to 
measure the ambiguity (aggregate possibilistic uncertainty) of student groups in 
the context of van Hiele level theory of geometric thinking. Since ambiguity of 
student groups is seen as their intelligence a comparison of intelligence of 
student groups is possible. The student group A has the highest ambiguity and 
hence the highest intelligence. The same can be said for student group B in 
relation to student group C. 

Intelligence, a primary aptitude of the mind, is the result of a number of 
independent abilities such as the capacity to comprehend and is widely used in 
educational settings (Perloff, Sternberg & Urbina, l996). It is a fuzzy (ill-
defined) concept which can be developed by training in accordance with the 
"negatively accelerated" curve of learning. Intelligence can predict behavior and 
uniquely contributes to subsequent performance which is the competence on a 
certain task, i.e., the maximum potential for attainment of a goal in an 
achievement context. This performance tends to decrease with decreasing 
intelligence. 

The overall fuzzy system above is a humanistic system in the context of 
van Hiele level theory and is characterized by the appearance of organized 
complexity, i.e., it has a moderate number of variables and shows the essential 
features of organization (Weaver, 1948). Systems of this type appear also in 
other developmental theories such as SOLO taxonomy (Biggs & Collis, 1982) 
and Bruner (1964a). Application of the measure AU (Pos) on these theories will 
probably establish it as a viable measure in educational research. 

The methods used in this work are a qualitative innovation in mathematics 
education since they can handle, according to Zadeh (1978), "the intrinsic 
uncertainty of natural language which is a logical consequence of the necessity 
to express information in summarized form." The feasibility of using results 
from possibility theory rests on the fact that student behavior in geometric 
thinking involves uncertainty. This theory gives mathematical precision to 
concepts and thinking processes that are considered imprecise and extends them 
to more general contexts. It can be considered a methodology in mathematics 
education since it has a coherent collection of methods for the acquisition of 
new knowledge which can be used for the solution of a wide variety of 
problems. This methodology underlines in most cases the student abilities to 
think in approximate terms, and is tolerant to imprecision and conflict. 

In this work one observes a relationship between the van Hiele level theory 
and a mathematical field of knowledge which offers keys of interpretation of the 
theory. Possibility theory facilitates understanding and operationalization of the 
theory which increases teachers' confidence and deepens their understanding of 
how students learn geometry. Thus, one acquires a new respect for the power of 
mathematical ideas in influencing pegagogical/psychological theories. However, 
the possibility theory, eventhough can be used as research tool in mathematics 
education, has not been given attention so far by the educational community. 
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Table 1 

Number of Students Attaining Degrees of Acquisition of Each van Hiele 
Level (Adopted from Gutierrez et al, 1991) 

 
  Degree of acquisition 

Group van Hiele 
Level 

No 
acquisition 

Low Intermediate High Complete 

A 1 0 0 0 0 20 

A 2 1 0 3 6 10 

A 3 2 3 6 6 3 

B 1 0 0 1 2 18 

B 2 0 3 4 13 1 

B 3 9 6 5 1 0 

C 1 0 2 4 2 1 

C 2 3 4 2 0 0 

C 3 9 0 0 0 0 

 
 

Table 2 
Fuzzy Data of Variables v1, v2, v3 Each With Fuzzy Sets a, b, c, d and e 

 
   A B C 

v1= { 

a 0 0 0 
b 0 0 2/9 
c 0 1/21 4/9 
d 0 2/21 2/9 
e 1 18/21 1/9 

v2= { 

a 1/20 0 3/9 
b 0 3/21 4/9 
c 3/20 4/21 2/9 
d 6/20 13/21 0 
e 10/20 1/21 0 

v3= { 

a 2/20 9/21 1 
b 3/20 6/21 0 
c 6/20 5/21 0 
d 6/20 1/21 0 
e 3/20 0 0 
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Table 3 
Possibility Distribution Estimates from Fuzzy Data. 

 
v1 v2 v3 mA rA mB rB mC rC 

s= e e e 0.075 0.500 0 0 0 0 

e e a 0.050 0.333 0.017 0.075 0 0 

e e b 0.075 0.500 0.012 0.053 0 0 

e e c 0.150 1 0.010 0.044 0 0 

e e d 0.150 1 0.002 0.009 0 0 

e d a 0.030 0.200 0.227 1 0 0 

e d b 0.045 0.300 0.150 0.660 0 0 

e d c 0.090 0 . 60 0v 0.126 0.555 0 0 

e a a 0.005 0.033 0 0 0.040 0.200 

e b a 0 0 0.052 0.229 0.050 0.250 

e e a 0.015 0.100 0.070 0.308 0.025 0.125 

e c b 0.023 0.153 0.047 0.207 0 0 

e b b 0 0 0.035 0.154  0 

c a a 0 0 0 0 0.150 0.750 

c b a 0 0 0.003 0.011 0.200 1 

d a a 0 0 0 0 0.074 0.370 

d b a 0 0 0.006 0.026 0.100 0.500 

b a a 0 0 0 0 0.074 0.370 

b b a 0  0 0 0.100 0.500 

c c a 0 0 0.004 0.018 0.100 0.500 

e c c 0.045 0.300 0.038 0.167 0 0 

e c d 0.045 0.300 0:. 008 - 0.035 0 0 

e d d 0.090 0.600 0.025 0.110 0 0 

e d e 0.045 0.300 0 0 0 0 

d d a 0 0 0.025 0.110 0 0 

e b c 0 0 0.029 0.128 0 0 

e a b 0.008 0.053 0 0 0 0 

e c e 0.023 0.153 0 0 0 0 

e a c 0.015 0.100 0 0 0 0 

e a d 0.015 0.100 0 0 0 0 

e a e 0.008 0.053 0 0 0- 0 

d b b 0 0 0.004 0.018 0 0 

d b c 0 0 0.003 0.013 0 0 

d c a 0 0 0.008 0.035 0.049 0.245 

d e b 0 0 0.005 0.022 0 0 

d e c 0 0 0.004 0.018 0 0 

d d b 0 0 0.017 0.075 0 0 

d d c 0 0 0.0:14. 0.062 0 0 

d d d 0 0 0.003 0.013 0 0 

d e a 0 0 0.002 0.009 0 0 

d e b 0 0 0.001 0.004 0 0 
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d e c 0 0 0.001 0.004 0 0 

b c a 0 0 0 0 0.050 0.250 

e b b 0 0 0.001 0.013 0 0 

c b c 0 0 0.002 0.009 0 0 

c c b 0 0 0.003 0.011 0 0 

c c c 0 0 0.002 0.009 0 0 

c d a 0 0 0.011 0.057 0 0 

c d b 0 0 0.008 0.035 0 0- 

c d c 0 0 0.007 0.031 0 0 

c d d 0 0 0.001 0.004 0 0 

 
 

Table 4 
The Values of (rj-ri+1)/(i+1-j) 

 
 (rj-ri+1)/(i+1-j) 

Pass 1 2 

i\j 1 3 

 0.250  

2 0.250  

3 0.166 0 

4 0.125 0 

5 0.126 0.043 

6 0.105 0.033 

7 0.107 0.050 

8 0.094 0.042 

9 0.084 0.036 

10 0.080 0.038 

11 0.080 0.042 

12 0.083 0.050 
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