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Abstract 

 
 Relative to a general quadrilateral, semidiagonals are defined. The direct 
sum of squares of sides and alternating sum of squares of sides are also defined. 
Several preliminary relationships between the lengths of the sides, the lengths of 
the semidiagonals, and an angle generated by the intersection of the diagonals 
are developed. The main results are established which express the direct and 
alternating sums of squares of sides as functions of the semidiagonals and angle. 
The angle is then eliminated to express the direct and alternating sums in terms 
of an initial side and the semidiagonals. These results are simplified for several 
special cases of quadrilaterals, including the cases of perpendicular diagonals, 
the parallelogram, the rectangle, and the rhombus. The concluding remarks 
discuss a failed attempt to derive stronger formulas for the general cases of the 
direct and alternating sums than are developed in this paper. Finally, an 
alternative but similar approach to all of the results developed in this paper is 
presented. 
 

Introduction 
 
 Planar figures have fascinated mathematicians as far back as the history 
of mathematics is recorded. Furthermore, exploring the relationships between 
the various parts of these figures has captured the attention of many over the 
years. One of the most basic planar figures is the polygon. The Babylonians 
studied relationships involving the squares of integer sides of fields for 
elementary surveying [1, p. 13]. Some of their work is recorded on a clay tablet 
called Plimpton 322, dated back to around 1900 B.C., written in cuneiform (the 
first known writing), and stored in a museum at Columbia University [1, pp. 12-
14]. Relationships between squares of integer sides of polygons were also 
studied by ancient Egyptians for mostly the same reasons as the Babylonians [1, 
p. 28]. However, it was the Greeks, in particular the Pythagoreans, who 
formalized geometry around 550 B.C. and generalized these ideas beyond 
positive integers [1, pp. 18-19]. 
 Perhaps the most sought after mathematical result in history was Fermat’s 
Last Theorem, which involved the squares of sides of triangles. Posed by Pierre 
de Fermat around 1637 [1, p. 9], the problem remained unsolved for centuries. It 
wasn’t until 1990 that Ken Ribet published Ribet’s Theorem ([1, p. 116],[5]), 
formerly known as the Epsilon Conjecture. Ribet’s Theorem in turn paved the 
way for Andrew Wiles to eventually complete a proof of the Taniyama-Shimura 
Conjecture, and consequently Fermat’s Last Theorem [1, p. 134], which was 
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published in 1995 [6]. Even now polygons and relationships involving the 
squares of their sides continue to be of interest. 
 

Basic Definitions 
 
 Accordingly, consider now the general quadrilateral Q with vertices 0V , 

1V , 2V , and 3V , ordered in a clockwise manner as shown in Figure 1 below. 
For each integer n, 0 ≤ n ≤ 3, define the side nS  of Q to be the segment between 

nV  and )4(mod1nV + . Furthermore, Q has diagonals 20VV  and 31VV  which 

intersect at a point P. Then for 0 ≤ n ≤ 3, define the semidiagonal nD  of Q to be 
the segment between nV  and P. Finally, define θ to be the angle between the 

semidiagonals 0D  and 1D . (See Figure 1 below.) 
 

 
Figure 1 

 
 Figure 1 evokes the question of what possible relationships exist between 
the sides and semidiagonals of Q. Inspired by the work of the Pythagoreans, 
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of Q for brevity. Similarly, ( )�
=

−
3

0n

2
n

n S1  is defined to be the alternating sum of 

squares of sides of Q, or simply the alternating sum of Q. We proceed now to 
establish some initial results upon which the rest of the paper is based. 
 

Preliminary Results 
 
 From Figure 1 it is clear that the sides and semidiagonals of Q generate 
four triangles with common vertex P. Applying the Law of Cosines to each side 
of Q, we have 
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Adding (3) to (1) produces 2

0S  + 2
2S  = ( 2

0D  + 2
1D  − θcosDD2 10 ) +  

( 2
2D  + 2

3D  − θcosDD2 32 ), and so 
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In a similar manner, adding (4) to (2) yields 2
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θcosDD2 21 ) + ( 2
3D  + 2

0D  + θcosDD2 03 ), and so 
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Adding (6) to (5) produces  

2
0S  + 2

2S  + 2
1S  + 2

3S  = 

2�
=

3

0n

2
nD  − ( )3210 DDDDcos2 +θ  + ( )2130 DDDDcos2 +θ  = 

2�
=

3

0n

2
nD  − θcos2 ( ) ( )[ ]21303210 DDDDDDDD +−+  = 

2�
=

3

0n

2
nD  − θcos2 [ ]21303210 DDDDDDDD −−+ . 

 
Therefore the direct sum of Q is  
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On the other hand, subtracting (6) from (5) yields  

2
0S  + 2

2S  − ( 2
1S  + 2

3S ) = 
− ( )3210 DDDDcos2 +θ  − ( )2130 DDDDcos2 +θ  = 

− θcos2 ( ) ( )[ ]21303210 DDDDDDDD +++  = 

− θcos2 [ ]21303210 DDDDDDDD +++ . 
 

Consequently, the alternating sum of Q is  
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Main Results 

 
  If [[x]] represents the greatest integer less than or equal to x for each real 
number x, then [[n/2]] = 0 for 0 ≤ n ≤ 1 and [[n/2]] = 1 for 2 ≤ n ≤ 3. Note also 
that 2 ≡ 0 (mod 2) and 3 ≡ 1 (mod 2). Substituting these results into (7) and (8) 
produces alternate formulas  
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for the direct and alternating sums of Q, respectively. 
  In order to eliminate θ from (9) and (10), we solve (1) for the expression 

θ− cos2  to obtain  
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Substituting (11) into (9) and (10) yields the additional formulas  
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for the direct and alternating sums of Q, respectively. 
  Several cases in which the quadrilateral Q satisfies various special 
conditions are worth consideration. We begin with the case in which the 
diagonals of Q meet at right angles. 
 

Perpendicular Diagonals 
 
  If the diagonals of Q are perpendicular then θ = 90°, and so θcos  = 0. 
Therefore (9) simplifies to 
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for the direct sum of Q. A similar substitution in (10) produces the 
corresponding formula  
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for the alternating sum of Q, which is equivalent to 
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Parallelogram 

 
  If Q is a parallelogram, then the diagonals of Q necessarily bisect each 
other [4, p. 46, Theorem 1.26], so that 0D  = 2D  and 1D  = 3D . Therefore 
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Substituting either of these expressions reduces (9) to 
 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 7 No. 2      16 

     �
=

3

0n

2
nS  = �

=

3

0n

2
nD2  (17) 

 
for the direct sum of Q, which is identical to (14). However, since 0D  = 2D   

and 1D  = 3D , then �
≡ )2(mod0n
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Consequently, substitution into (10) for the alternating sum of Q produces the 
formula  
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where j∈{0,2} and k∈{1,3}, or equivalently, j + k ≡ 1 (mod 2). 
 

Rectangle 
 
  If the quadrilateral Q is a rectangle, then the diagonals of Q are of equal 
length ([2, p. 176, Theorem 4.32],[3, p. 141, Theorem 4.33]) and bisect each 
other [4, p. 46, Theorem 1.26]. Thus iD  = jD  for each i,j∈{0,1,2,3}, so that 
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kD  for each integer k such that 0 ≤ k ≤ 3. Substitution then reduces 

the direct sum of Q in (17) to  
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for each integer k such that 0 ≤ k ≤ 3. However, this result could be obtained 
with a simple application of the Pythagorean Theorem since adjacent sides of Q 
are the legs of a right triangle whose hypotenuse is the corresponding diagonal 
of Q (see Figure 1). Furthermore, since iD  = jD  for each i,j∈{0,1,2,3}, then 

iD jD  = 2
kD  for each i,j,k∈{0,1,2,3}. Substitution then reduces the alternating 

sum of Q in (18) to  
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for each integer k such that 0 ≤ k ≤ 3. 
 

Rhombus 
 
  If Q is a rhombus then Q is a parallelogram whose diagonals are 
perpendicular ([2, p. 178, Theorem 4.35],[3, p. 136, Theorem 4.29]). Therefore 
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formulas (14) through (18) for the direct and alternating sums of Q apply to the 
rhombus as well. However, the results in (15) and (16) are obvious from the 
definition of a rhombus. Furthermore, iS  = jS  for each i,j∈{0,1,2,3}. Finally, 

since Q is also a parallelogram then 0D  = 2D  and 1D  = 3D  [4, p. 46, Theorem 
1.26]. Thus both (14) and (17) imply that for each integer m such that 0 ≤ m ≤ 3, 
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for each m,j,k∈{0,1,2,3} such that j + k ≡ 1 (mod 2). 
 

Concluding Remarks 
 
  An attempt failed to separate the parameters in (12) and (13) so that the 
sides and semidiagonals of the quadrilateral Q appear only on the left and right 
sides, respectively, of (12) and (13). More specifically, the initial side 0S  could 
not be successfully removed from the right side of the equation in either case 
without introducing other difficulties. 
  Finally, the derivations above were produced by ordering the vertices, 
sides, and semidiagonals of Q in a clockwise direction. Clearly the order of 
these parameters can be assigned just as easily in a counterclockwise manner to 
produce the same results. 
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