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Abstract 

  
This paper describes fundamentals of integer partitions and basic tools for 

their construction and enumeration. In particular, the paper includes some 
approaches which are not commonly known. 
 

1. Introduction 

The mathematics of integer partitions has been studied since the Ancient Greeks. 
However, most of the existent fundamental results on this subject are the 
outcome of a number of studies conducted for over 300 years since Leibniz 
asked Bernoulli if he had investigated the problem to determine the number of 
partitions of an integer . In fact, it was Leonhard Euler who made a sustained 
study of partitions and partition identities, and exploited them to establish a 
good number of results in Analysis in 1748. However, it was not until 1913 
when S. Ramanujan, in collaboration with G. H. Hardy, ingeniously proved 
several significant results related to integer partitions that the subject of integer 
partitions picked up [7], for example, contains various historical details). A 
significant contribution towards development of the mathematics of integer 
partitions has been due to their applications in combinatorics and algebra ([3] 
and [4], for example, contain many results). Relatively recently, several 
competing algorithms to compute both unrestricted and restricted integer 
partitions have appeared ([17] and [20], for example, provide a good account of 
algorithms to compute integer partitions along with an extensive list of 
references on this subject). 
 
A partition of an integer  is its representation as the sum of one or more 
positive integers where the order in which summands appear is immaterial. If the 
order in which summands appear in an integer partition is taken into 
consideration, it is called a composition. It is immediate to see that two 
partitions of an integer differ only with respect to the summands they contain. 
 
The central problem concerning integer partitions has been to devise techniques 
to enumerate distinct number of ways a positive integer  can be expressed as a 
sum  ,  = , where each  belongs to a multiset of positive integers 
disregarding order. Equivalently, the partitions of a number  can be seen to 
correspond to the set of solutions (  to the Diophantine 
equation 
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Note: A multiset is a collection of objects in which objects can repeat finitely 
many times. Every individual occurrence of an object in a multiset is called its 
element. The distinguished elements of a multiset are its objects. The number of 
times an object appears in a multiset is called its multiplicity. ([16], for 
example, contains related details). 
 

. 
For example, one of the partitions of  can be seen to correspond to                                  

 written as  which is  or                        
. 

 
In standard representation, a partition  is any finite or infinite weakly 
decreasing (or non-increasing) sequence of non-negative integers 
(  containing only finitely many non-zero terms, denoted 

  with  ([15] and [12]). 
Note that some authours choose to use weakly increasing (or non-decreasing) in 
order to define a partition  The non-zero s appearing in a partition  are 
called its parts (or addends or summands) and the number of parts is called its 
length, denoted . The sum of the parts of  is called its weight, 
denoted . If , then  is said to be a partition of , sometimes 
denoted  ([2]). 
 
It is sometimes more useful to represent a partition  of  in a multiplicity form. 
For example, a partition  of  in multiplicative form is 
denoted ( , ) or simply as ( 14). 
In general, let  be the distinct parts in a partition of  and 

 their corresponding multiplicities where each  is a positive 
integer, then  +  + .  .  .  +  is represented  ( , , .  .  
. ). This is similar to the frequency representation of partition of  ([2]). 
There are other notations occasionally found useful ([12]). 
 
The enumerator function representing the number of all unrestricted partitions of 
weight , denoted  or , is called the partition function of . For example, 

 viz., 
. 

Conventionally, ,  for a negative . The empty partition  
is viewed as the unique partition of zero and hence . 
 
In the literature dealing with integer partitions, some typical questions 
concerning  that have continually been receiving attention include the 
following: 
 
(i) How fast does  grow? 
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(ii) Are there efficient ways to compute ? 
(iii) What is its parity? 
(iv) What are its distinctive arithmetic properties? 
(v) Is  prime infinitely often?. 
 
All these problems are known to be quite difficult. For example, let us consider 
the problem (i) mentioned above. The first few empirical results viz., 

 may 
suggest  that  runs through prime numbers, but it is false because 

  .  .  . , 
, etc. 

 
As of April 2011, the largest known prime of the kind is  with 

 decimal digits, found by Bernardo Boncompagni [6]. 
A nice formulation of this problem is provided in ([10], P.32): 

   
                  
        , 
 
where  is an tuply subscripted variable gives a representation of a partition 
of . For example, if , the aforesaid notation stands for 
            . 
 
Notwithstanding, in 1918, it was ingenious S. Ramanujan, in collaboration with 
G. H. Hardy, besides providing a number of remarkable results about , 
succeeded for the first time in answering the question (i) above by discovering 
an asymptotic characterization of  viz. , 

 �   as , which shows that the growth of  is 

subexponential. 
 
J. V. Uspersky obtained the same result independently in 1920. 
 
The striking feature of the aforesaid formulation lies in the fact that it provides 
results reasonably quite close to the exact solution; for example,  

 as against . 
  
In 1937, Hans Rademacher [13] was able to improve on the aforesaid 
formulation by providing a convergent series expression for . 
 
Question (ii) mentioned above was first attacked by the great Swiss 
mathematician Leonhard Euler [9] who discovered the following recurrence 
relation for : 
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where  if  if  negative, and the sum is taken over 
all generalized pentagonal numbers of the form , for 

 in succession. 
As to the performance of the aforesaid algorithm, Andrews [2] and Andrews and 
Kimino [3] note: 
No one has ever found a more efficient algorithm for computing . It 
computes a full table of values of  for �  in time 0( ). 
 
Percy Macmahon, by exploiting the aforesaid recurrence relation, constructed a 
table of  for . Gupta (1939) published a more 
extensive table of  for   ([7]). 
 
Euler also used the recurrence relation 
  
   
to determine  for increasing  for each , which helped deriving  
viz.,  for . Also, a table of  for  and 

 was constructed. 
 
Note that the number of partitions of  into at most  parts is usually denoted 

. 
It is noted [7] that Gupta (1939) also used the recurrence relation                                

 
to determine , defined as the number of partitions of  into parts, the 
smallest being at least , which helped deriving  viz., . 
As for now, questions (iii) and (v) are still largely open, while the question (iv) 
has been answered in the affirmative. A full discussion of the questions (iii) and 
(iv) can be found in [2] and [3]. 
 
 
2.0 Two basic tools for dealing with Partitions of Integers 
 
2.1 Ferrers diagram: The scheme for representing a partition by a diagram is 
attributed to Ferrers and Sylvester, often called Ferrers diagram (or Young 
diagram). The Ferrers diagram corresponding to a partition , denoted by , is 
a way of visualizing  with a graphical representation comprising of a 
schematic arrangement of dots (or blocks). Basically, the construction of the 
Ferrers diagram for a given portion  requires placing a 
row of  left justified blocks on top of  blocks, for each . 
Each row represents one addend in the partition. The number of blocks in a row 
represents the value of that total addend. For example, the Ferrers diagram for 
the partition  is depicted below:  
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Fig. 1(Stair-shaped stacking of squares or dots)       
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Fig. 2, Alternatively, the above representations can be depicted upside-down as 
follows: 
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Conventionally, any one of them can be selected and in each case there is a 

bijection between Ferrers diagram with  blocks and partitions of  ([12], for 

example, contains details). It is noteworthy that many intriguing results about 

restricted partitions have been established with the aid of Ferrers diagram ([2], 

for example, contains contributions made by Sylvester (1984-86), Macmohan 

(1916) and others, including his own, in this regard). Moreover, the possibilities 

for new results to be discovered seem promising.  

2.2 Some typical properties of Ferrers diagrams are as follows:  [proofs 

can be found in various texts dealing with combinatorics]: 

(i)  If a Ferrers diagram of a partition is reflected about the  downward 

slanting line through the upper left dot, we obtain the same partition as when we 

count the dots by the columns rather by rows. The resulting diagram is called the 

conjugate of the original diagram. For example,  

                                 3                4   

                                 2               2   

                                 1                               1   

                                 1                                                  

That is, the conjugate of  is . The following result is 
immediate by reasoning on Ferrers diagram and conjugate partitions:  
The number of partitions of  with  parts equals the number of partitions of  
whose largest part is . 
In general, the conjugate of a partition  is denoted by  and the diagram of  
is obtained by taking the transpose of the diagram of . 
A partition is called self-conjugate if it equals its conjugate; or, equivalently, if 
the Ferrers diagram is symmetric about its diagonal. An interesting result in this 
regard is as follows: 
There is a bijection between self-conjugate partitions and partitions all whose 
parts are odd and distinct. In other words, the number of self-conjugate 
partitions of  equals the number of partitions of  all whose parts are odd and 
distinct. 
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(ii) The number of partitions of  into parts, the largest of which is is 
equal to the number of partitions of  into exactly  parts. To illustrate this fact, 
let us consider the original diagram of the partition  in which the 
largest part  and reading it columnwise, we obtain the partition viz., 
 
 4          2  1 

                          

    

  

  

with exactly  parts of the same number . 
(iii) It is expedient to observe the occurrence of the largest square embedded in 
the Ferrers diagram of a partition . This is called the Durfee square of the 
partition . The number of boxes on the main diagonal of the Ferrers diagram 

 is called the Durfee size of the partition and defined by .Formally,  
is the largest value  such that . Thus, the Durfee square of  is the 
subpartition built from the  boxes. For example, in the Ferrers 
diagram given above in (ii), and Durfee square of  is of the size 

. 
2.3 Generating Functions 
As noted in ([10], p.86), it was Pierre Laplace who introduced generating 
functions in his classic work Theorie Analytique des probabilities (1812), and 
part of the credit for discovering generating functions goes to Bernoulli (1728) 
and J. Stirling (1730). However, Leonhard Euler was the first ([10], p.494) to 
apply generating functions particularly to count the partitions by size. Euler 
proved the following theorem:  
For q > 1,    (proof can be found in [2].  

As noted in [7], Euler, while providing solution to a problem proposed by Ph. 
Maude, asserted that the number of partitions of  into  distinct parts is the 
coefficient of  in the power series expansion of the infinite product 

  
The motivation for exploiting generating functions to solve partition problems 
lies in the fact that they can be manipulated more easily than their combinatorial 
counterparts. The central idea for constructing a generating function for a given 
sequence or numeric function       consists in 
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formulating a power series (or an analytic function) in terms of a parameter  
viz.,  
        
where the coefficient  of  represents the number of ways that the event  
can occur. That is, the coefficients encode information about the sequence ( ) 
indexed by the natural numbers, put metaphorically by Wilf [19] in the 
following words: 
A generating function is a clothesline on which we hang up a sequence of 
numbers for display.  
The generating function for the sequence  described above is sometimes 
called the                ordinary generating function of the sequence . If it is 
used for solving counting problems, it is called formal power series. A typical 
example is to construct a generating function for the number of subsets  of an 

element set viz.,  which may be 
viewed as a generating function  where the coefficient 

 of   is the number of subsets of an element set. Essentially, the terms of 
the sequence  are coded as the coefficients of powers of a variable  in 
power series of the form described above. 
Note that the infinite series viz., can be written as   
assuming  for which the series converges. However, in order to solve the 
problems related to counting of partitions deploying a formal power series 
expansion, we need not be concerned with the convergence issue of the series. 
Essentially, it is the coefficient of  in a particular expansion that serves the 
purpose.  
In turn, it is suggested that the problem of counting partitions of a number by 
size can be tackled by constructing an appropriate formal geometric series, 
guided by the fact that one needs to know how many ones, twos, threes and so 
on are there in the partitions. Since in each partition, one or two or three and so 
on can occur 0, 1, 2,… times respectively, the contributing factors to the 
generating function will be  corresponding to number of 
occurrences of one,  for two,  for 
three, and so on. Accordingly, the geometric series  
with  constitutes the generating function for the number of partitions by 
size viz.,  where  is the number of partitions of , which is 
given by   That is, the number of partitions 

of  equals the coefficient  of  in the formal power series expansion. 
Moreover, the number of partitions of  into odd integers (i.e., the number of 
ways to write  as he sum of odd positive integers) where the order is 
immaterial and repetitions are allowed) is equal to the coefficient say  of 

 in the formal power series expansion of  . . . .  Also, the 

number of partitions of  into distinct parts (i.e., the number of ways to write  
as he sum of positive integers), where the order is immaterial but no repetitions 
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allowed is equal to the coefficient say  of  in the formal power series 
expansion                                       
It is known [Euler] that the generating functions for and  are the 
same i.e.,             = , since 
  .  .  .  =  

  
Alternatively, the proof can be easily obtained as follows: 
The generating function for the number  of partitions of  into distinct 
parts can be given by 

. 
The generating function for the number  of partitions of  into odd parts 
can be given by 

 .  

Since ( , it follows that  

 
or,  

. 

For instance, if , the two classes of partitions are given respectively by 
 and 

(  
In fact, many similar partition identities taking some sort of generalizations of 
the stipulation (distinctness, for example) of Euler’s theorem (for example, 
Rogers-Ramanujan identities) have been discovered ([2] contains proofs and 
various other details). The most striking result in this regard is that of Bousquet-
M lou and Erickson [5] who interpreted distinctness condition of Euler’s 
theorem as a multiplicative property rather than an addictive property and 
developed the theory of Lecture Hall Partitions.   
Remark: It may be observed that the geometric series mentioned above builds 
up Ferrers diagrams. For example, 
 
 
 1                 . . . 

or,                                 . . . 

builds up Ferrers diagram by rows; and  

 1                          . . . 
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or,                             . . . 

builds up Ferrers diagrams by columns.  
Moreover, the multiplication of two or more series of the above form 
corresponds to the juxtaposition of rows or columns in building up Ferrers 
diagrams. 
 
Before closing our discussion on this topic, we wish to mention that a very 
convenient method to enumerate the number of partitions of  using a 
generating function is provided in ([10], p.92) as follows: 

   

where . 
The parenthesized quantity is . The number of terms for a particular value of 

 is  the number of partitions of . For example, one partition of 12 is 
 ,  
which corresponds to a solution of the equation , 
where  is the number of  in the partition. In the example above, 

 and the other  are zero, giving the expansion                

 as a part of the expansion for . 
It may be noted at this end that there are many other applications of the 
generating functions which have not been addressed in this paper; for example, 
solving recurrence relations, proving a number of combinatorial identities, etc., 
([2], [3], [11], [12] and [19], for example, contain many such partition theoretic 
applications of generating functions). 
It is also worthy of notice that multiple-variable generating functions are also 
exploited in enumerating certain classes of partitions, and in proving deeper 
partition identities ([1], [2] and [14], for example, contain a variety of results in 
this regard). 
 
Appendix 
The following are some frequently used generating functions for simple numeric 
functions: 

  for the numeric function with its general term  

 for the numeric function with its general term . 

 for the numeric function with its general term  

    , 
where  is a constant. 

(i)       
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