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Abstract

This paper describes fundamentals of integer partitions and basic tools for
their construction and enumeration. In particular, the paper includes some
approaches which are not commonly known.

1. Introduction

The mathematics of integer partitions has been studied since the Ancient Greeks.
However, most of the existent fundamental results on this subject are the
outcome of a number of studies conducted for over 300 years since Leibniz
asked Bernoulli if he had investigated the problem to determine the number of
partitions of an integer n. In fact, it was Leonhard Euler who made a sustained
study of partitions and partition identities, and exploited them to establish a
good number of results in Analysis in 1748. However, it was not until 1913
when S. Ramanujan, in collaboration with G. H. Hardy, ingeniously proved
several significant results related to integer partitions that the subject of integer
partitions picked up [7], for example, contains various historical details). A
significant contribution towards development of the mathematics of integer
partitions has been due to their applications in combinatorics and algebra ([3]
and [4], for example, contain many results). Relatively recently, several
competing algorithms to compute both unrestricted and restricted integer
partitions have appeared ([17] and [20], for example, provide a good account of
algorithms to compute integer partitions along with an extensive list of
references on this subject).

A partition of an integer n is its representation as the sum of one or more
positive integers where the order in which summands appear is immaterial. If the
order in which summands appear in an integer partition is taken into
consideration, it is called a composition. It is immediate to see that two
partitions of an integer differ only with respect to the summands they contain.

The central problem concerning integer partitions has been to devise techniques
to enumerate distinct number of ways a positive integer = can be expressed as a

sum L»; , i = 1,K&, where each »; belongs to a multiset of positive integers
disregarding order. Equivalently, the partitions of a number n can be seen to
correspond to the set of solutions (j. . . . >4} to the Diophantine
equation
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Note: A multiset is a collection of objects in which objects can repeat finitely
many times. Every individual occurrence of an object in a multiset is called its
element. The distinguished elements of a multiset are its objects. The number of
times an object appears in a multiset is called its multiplicity. ([16], for
example, contains related details).

1x, 4+ 25, ..+ 0nx,=n

For example, one of the partitions of 4 can be seen to correspond to

14 + 2.0+ 3.0 + 40 = 4, writtenas (4. 0, 0, 07 whichis (1, 1, 1,1} or
1+1+14+41=4

In standard representation, a partition > is any finite or infinite weakly
decreasing (or non-increasing)  sequence - of ~ non-negative integers
(™4 ™2, w »p. . .) containing only finitely many non-zero terms, denoted
A= (Ao Ao ow A Jdwith ag &= ag 2.4 ([15] and [12]).

Note that some authours choose to use weakly increasing (or non-decreasing) in
order to define a partition » The non-zero »;'s appearing in a partition > are
called its parts (or addends or summands) and the number of parts is called its
length, denoted ! {»). The sum of the parts of » is called its weight,
denoted | » |. TIf |»| = =, then » is said to be a partition of n, sometimes

denoted = = n ([2]).

It is sometimes more useful to represent a partition » of = in a multiplicity form.
For example, a partition 2 + 1 + 1 + 1 + 1 of 3 in multiplicative form is
denoted (2, 1%) or simply as (21%).

In general, let x; = x, =... = x4 be the distinct parts in a partition of »n and
My, Mo . . Mg their corresponding multiplicities where each m; is a positive
integer, then n =myx; + mox;+. . . + mgxyis represented (™, x,™, . |
. xz™), This is similar to the frequency representation of partition of n ([2]).
There are other notations occasionally found useful ([12]).

The enumerator function representing the number of all unrestricted partitions of
weight n, denoted F, or F(n}, is called the partition function of m. For example,
F4y =35 viz.,
f4=34+1=2+2=24+1+1=14+14+1+ 1%L
Conventionally, F(0} = 1, F(n) = 0 for a negative n. The empty partition &
is viewed as the unique partition of zero and hence P{0} = 1.

In the literature dealing with integer partitions, some typical questions
concerning F{n)} that have continually been receiving attention include the
following:

@) How fast does Fin} grow?
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(i1) Are there efficient ways to compute Fn)?
(ii1) What is its parity?

@iv) What are its distinctive arithmetic properties?
(v) Is P(n) prime infinitely often?.

All these problems are known to be quite difficult. For example, let us consider
the problem (i) mentioned above. The first few empirical results viz.,

P(1) =1,P2)= 2,P(3) = 3,P&) = 5,P(5) = 7,P(6) = 11 may
suggest that P{n) runs through prime numbers, but it is false because

P(7) =15,P(8) = 22,P(9) = 30,P(10) = 42, . . S
P(1000) = 2.4 = 10% etc.

As of April 2011, the largest known prime of the kind is P (30248445} with
5119 decimal digits, found by Bernardo Boncompagni [6].
A nice formulation of this problem is provided in ([10], P.32):

E”‘h R
ottt =0
hWZizz . ==l

where @ is an n —tuply subscripted variable gives a representation of a partition
of m. For example, if 1 = 3, the aforesaid notation stands for

81131 t Szaae0 t fzzioe T Caaice T Szzoce T Pawor T Cspooe-

Notwithstanding, in 1918, it was ingenious S. Ramanujan, in collaboration with
G. H. Hardy, besides providing a number of remarkable results about F{r},
succeeded for the first time in answering the question (i) above by discovering
an asymptotic characterization of F(n} viz. ,

Pn) - o= e™/7% a5 1 — 2o, which shows that the growth of Pin) is

subexponential.

J. V. Uspersky obtained the same result independently in 1920.

The striking feature of the aforesaid formulation lies in the fact that it provides
results reasonably quite close to the exact solution; for example,
P(1000) = 2.4402 x 10%* as against 2.4 x 103,

In 1937, Hans Rademacher [13] was able to improve on the aforesaid
formulation by providing a convergent series expression for F ().

Question (ii)) mentioned above was first attacked by the great Swiss
mathematician Leonhard Euler [9] who discovered the following recurrence
relation for P(n}:

Pk} = P(k-1) + P(k-2) — P(k-3) — P(k-7) + P(k-12) + P(k-13)
— P(k-22) — P(k-26) +. . .
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where F(k) = 1if &k = 0. P(k) = 0if k negative, and the sum is taken over
all generalized pentagonal numbers of the form %ﬂ{gﬂ_ -1}, for
n=1,-1,2,-2,3,—3, . . .in succession.

As to the performance of the aforesaid algorithm, Andrews [2] and Andrews and
Kimino [3] note:

No one has ever found a more efficient algorithm for computing Pi{n}. It
computes a full table of values of P(n) for n < N in time O(N ~'2).

Percy Macmahon, by exploiting the aforesaid recurrence relation, constructed a
table of P{n) for m = 1, Z,, . .,200. Gupta (1939) published a more
extensive table of Fim)} for1l = = = 800 ([7]).

Euler also used the recurrence relation

Pinom) = Pln. m=1) +Pn —m, m), nz1

FlOom) =1

to determine Fin.n1) for increasing = for each =, which helped deriving F{n}
viz., P(n.m) = Pin) for m = n. Also, a table of P{n.m) for n = 89 and
m = 1 was constructed.

Note that the number of partitions of = into at most # parts is usually denoted
Pin,m).

It is noted [7] that Gupta (1939) also used the recurrence relation
rinnm) =rin, m+1) + rin—1 m)

to determine {n.m}, defined as the number of partitions of n into parts, the
smallest being at least #, which helped deriving F{n) viz., #{n. 1} = P(n).

As for now, questions (iii) and (v) are still largely open, while the question (iv)
has been answered in the affirmative. A full discussion of the questions (iii) and
(iv) can be found in [2] and [3].

2.0 Two basic tools for dealing with Partitions of Integers

2.1 Ferrers diagram: The scheme for representing a partition by a diagram is
attributed to Ferrers and Sylvester, often called Ferrers diagram (or Young
diagram). The Ferrers diagram corresponding to a partition », denoted by ., is
a way of visualizing * with a graphical representation comprising of a
schematic arrangement of dots (or blocks). Basically, the construction of the
Ferrers diagram for a given portion »= {»j. »z.. . >y} requires placing a
row of ;. left justified blocks on top of =; blocks, for each i =1, 2,...k — 1.
Each row represents one addend in the partition. The number of blocks in a row
represents the value of that total addend. For example, the Ferrers diagram F, for
the partition > = (3,3.1, 1) is depicted below:
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Fig. 1(Stair-shaped stacking of squares or dots)

Fig. 2, Alternatively, the above representations can be depicted upside-down as
follows:

3 s =

5% s 8 @
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Conventionally, any one of them can be selected and in each case there is a
bijection between Ferrers diagram with & blocks and partitions of # ([12], for
example, contains details). It is noteworthy that many intriguing results about
restricted partitions have been established with the aid of Ferrers diagram ([2],
for example, contains contributions made by Sylvester (1984-86), Macmohan
(1916) and others, including his own, in this regard). Moreover, the possibilities

for new results to be discovered seem promising.

2.2 Some typical properties of Ferrers diagrams are as follows: [proofs

can be found in various texts dealing with combinatorics]:

@) If a Ferrers diagram of a partition is reflected about the 45  downward
slanting line through the upper left dot, we obtain the same partition as when we
count the dots by the columns rather by rows. The resulting diagram is called the

conjugate of the original diagram. For example,

3111 —_— 4 v v w a

AR 2 &w

That is, the conjugate of (3,2,1,1) is (4,2,1). The following result is
immediate by reasoning on Ferrers diagram and conjugate partitions:

The number of partitions of n with & parts equals the number of partitions of n
whose largest part is k.

In general, the conjugate of a partition » is denoted by » ' and the diagram of »'
is obtained by taking the transpose of the diagram of ..

A partition is called self-conjugate if it equals its conjugate; or, equivalently, if
the Ferrers diagram is symmetric about its diagonal. An interesting result in this
regard is as follows:

There is a bijection between self-conjugate partitions and partitions all whose
parts are odd and distinct. In other words, the number of self-conjugate
partitions of # equals the number of partitions of % all whose parts are odd and
distinct.
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(i1) The number of partitions of = into parts, the largest of which is .is
equal to the number of partitions of # into exactly  parts. To illustrate this fact,
let us consider the original diagram of the partition (3.2,1.1) = 7 in which the
largest part(*} = 3 and reading it columnwise, we obtain the partition viz.,

4 2 1

with exactly » = 3 parts of the same number n = 7.

(iii) It is expedient to observe the occurrence of the largest square embedded in
the Ferrers diagram of a partition >. This is called the Durfee square of the
partition . The number of boxes on the main diagonal of the Ferrers diagram
£, is called the Durfee size of the partition and defined by d(»}.Formally, d(»)
is the largest value i such that »;z i. Thus, the Durfee square of » is the
subpartition built from the (>} x &(>)} boxes. For example, in the Ferrers
diagram given above in (ii), d{») = 2 and Durfee square of » is of the size
2w 2

2.3 Generating Functions

As noted in ([10], p.86), it was Pierre Laplace who introduced generating
functions in his classic work Theorie Analytique des probabilities (1812), and
part of the credit for discovering generating functions goes to Bernoulli (1728)
and J. Stirling (1730). However, Leonhard Euler was the first ([10], p.494) to
apply generating functions particularly to count the partitions by size. Euler
proved the following theorem:

Forq>1, ¥, ., Plnlg" =11 —_ (proof can be found in [2].

=1 1-g"

As noted in [7], Euler, while providing solution to a problem proposed by Ph.
Maude, asserted that the number of partitions of n into m distinct parts is the
coefficient of z™g" in the power series expansion of the infinite product
nj-';,_ {1+ zg7).

The motivation for exploiting generating functions to solve partition problems
lies in the fact that they can be manipulated more easily than their combinatorial
counterparts. The central idea for constructing a generating function for a given
sequence or numeric function (@ @g, @00 « @y 4 o) consists in
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formulating a power series (or an analytic function) in terms of a parameter =
viz., )
Alz) = Bhpopz™ = ap + @z + Gz’ + o0

where the coefficient az of z* represents the number of ways that the event k
can occur. That is, the coefficients encode information about the sequence (z;)
indexed by the natural numbers, put metaphorically by Wilf [19] in the
following words:

A generating function is a clothesline on which we hang up a sequence of
numbers for display.

The generating function for the sequence (@; ) described above is sometimes
called the ordinary generating function of the sequence {ay ). If it is
used for solving counting problems, it is called formal power series. A typical
example is to construct a generating function for the number of subsets of an
# —element set viz., S(z) =14 22 +2%2% + . ., 2"2"4 .. . which may be
viewed as a generating function (1.2%2.%....2" . .) where the coefficient
2% of z™ is the number of subsets of an n —element set. Essentially, the terms of
the sequence{2™) are coded as the coefficients of powers of a variable z in
power series of the form described above.

Note that the infinite series viz., 1+ 2z + 2°z< 4+, . . can be written as ,

1-12=

assuming |z| = 1 for which the series converges. However, in order to solve the
problems related to counting of partitions deploying a formal power series
expansion, we need not be concerned with the convergence issue of the series.
Essentially, it is the coefficient of z¥ in a particular expansion that serves the
purpose.

In turn, it is suggested that the problem of counting partitions of a number by
size can be tackled by constructing an appropriate formal geometric series,
guided by the fact that one needs to know how many ones, twos, threes and so
on are there in the partitions. Since in each partition, one or two or three and so
on can occur 0, 1, 2,... times respectively, the contributing factors to the
generating function will be {1+ x+ x*+...) corresponding to number of
occurrences of one, {1+ x* +x*+ .. .} fortwo, (1 +x* +x%+x"+. . .Jfor

1 1

. . . 1
three, and so on. Accordingly, the geometric series — , — —_—
1-x 1—xs 1—x™

with || < 1 constitutes the generating function for the number of partitions by

size Viz., ZynzoPn)x™ where P(n) is the number of partitions of n, which is

. 1 1 . .
given by [1,., T Al That is, the number of partitions
G

FEEEEET am o

of = equals the coefficient F{n} of x* in the formal power series expansion.
Moreover, the number of partitions of 7 into odd integers (i.e., the number of
ways to write n as he sum of odd positive integers) where the order is
immaterial and repetitions are allowed) is equal to the coefficient (F,(n], say} of
x™ in the formal power series expansion of # . ... Also, the
Li—zlli—2= 1-—2)
number of partitions of 7 into distinct parts (i.e., the number of ways to write 7
as he sum of positive integers), where the order is immaterial but no repetitions
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allowed is equal to the coefficient (P: (n), say) of =™ in the formal power series
expansion A+ +00+2%)....
It is known [Euler] that the generating functions for F {n} and P;{n) are the
same i.e., B, (n) = Py (), since

1+ 2 + 2 + %7 . ) ) =
1-x0 1-x 1-af L L L
f-x d-xl 1exd T dow Tgex® TiopEt
Alternatively, the proof can be easily obtained as follows:
The generating function for the number F{(n} of partitions of n into distinct
parts can be given by
Enanﬂ{?ﬂ g" =151 + 9™
The generating function for the number (1] of partitions of n into odd parts

can be given by
Enabﬂ{ﬂ]qﬂ = 117 :

=g
Since (1 — g*) = (1 — g™ X1 +g™), it follows that

2. 2waer| Ja—em=]Ja-a™
T n=1 n=1

or,

Tz D" =iy == = Tz O g™

n=1 1-gir—i

For instance, if n =8, the two classes of partitions are given respectively by
431),(521),(533), (62),(71).8 and
(1%),(3 1%), (3218, (5 1%), (5 3).(7 1).

In fact, many similar partition identities taking some sort of generalizations of
the stipulation (distinctness, for example) of Euler’s theorem (for example,
Rogers-Ramanujan identities) have been discovered ([2] contains proofs and
various other details). The most striking result in this regard is that of Bousquet-
Mélou and Erickson [5] who interpreted distinctness condition of Euler’s
theorem as a multiplicative property rather than an addictive property and
developed the theory of Lecture Hall Partitions.

Remark: It may be observed that the geometric series mentioned above builds
up Ferrers diagrams. For example,

builds up Ferrers diagram by rows; and

1

== 0O M [
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builds up Ferrers diagrams by columns.

Moreover, the multiplication of two or more series of the above form
corresponds to the juxtaposition of rows or columns in building up Ferrers
diagrams.

Before closing our discussion on this topic, we wish to mention that a very
convenient method to enumerate the number of partitions of # using a
generating function is provided in ([10], p.92) as follows:

6(2) = Ty (% R

Fikn o EmaERilig ! tRaig!t " mEmiy!
where (ks + 2k;+. o« FMmky = m).
The parenthesized quantity is ;. The number of terms for a particular value of
m is P (m). the number of partitions of #n. For example, one partition of 12 is
12=1+2+2+2+3,
which corresponds to a solution of the equation &y + 2F; + 12k, = 12,
where k; is the number of f's in the partition. In the example above,

k, =1, &k, =3, k. =1 and the other k's are zero, giving the expansion
i :%: :1—1 = ::—0515:!55 as a part of the expansion for ays.

It may be noted at this end that there are many other applications of the
generating functions which have not been addressed in this paper; for example,
solving recurrence relations, proving a number of combinatorial identities, etc.,
([21, [3], [11], [12] and [19], for example, contain many such partition theoretic
applications of generating functions).

It is also worthy of notice that multiple-variable generating functions are also
exploited in enumerating certain classes of partitions, and in proving deeper
partition identities ([1], [2] and [14], for example, contain a variety of results in
this regard).

Appendix
The following are some frequently used generating functions for simple numeric
functions:

Alz) = L—iz for the numeric function with its general term @, = 1

Alz) = % for the numeric function with its general term @, = .

Alz) = __1“;: for the numeric function with its general term a, = #{r + 1.
Allz) = ﬁ for the numeric function with its general term a, = a",
-
where « is a constant.
i) Al =1 +=)" for the numeric function with its general term

a = [:J
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Alz) = 212;1: for the numeric function with its general term a, = r2.

Alz) = e” for the numeric function with its general term g, = E. .
7 D. Singh, Ph.D., Ahmadu Bello University, Zaria, Nigeria
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