Ore extension over α -quasi-Baer and α -p.q.-Baer rings

M.R. Khan, Ph.D. † Prachi Juyal, Ph. D. ‡

Abstract

In this paper we extend some well known results of quasi-Baer and p.q.-Baer to α -quasi-Baer and α -p.q.-Baer using α -weakly rigid ring. Further, we investigate some results for quasi α -Armendariz ring and also we give some Examples to illustrate our theory.

Scientroduction es

Throughout this paper R denotes an associative ring with identity, α is an endomorphism of R and δ an α -derivation of R, that is δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for all $a, b \in R$. Kaplansky [11] introduced Baer rings to abstract various prospects of AW^* -Algebra and von-Neumann Algebra. Quasi-Baer rings (i.e. rings in which the right annihilator of every ideal is generated by an idempotent) introduced by Clark [5], are used to characterize when finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The definition of quasi-Baer ring is left-right i.e. a ring R is left (quasi) Baer if and only if R is right (qausi) Baer.

As a generalization of quasi-Baer ring, G.F. Birkenmeier, J.Y. Kim, and J.K. Park [4] introduced the concept of principally quasi-Baer rings. A ring R is called principally quasi-Baer (or right p.q.-Baer) if the right annihilator of a principal right ideal of R is generated by an idempotent. The class of p.q.-Baer ring includes all Baer rings, quasi-Baer rings, abelian p.p. rings and biregular rings. Further a number of authors investigated quasi-Baer and p.q.-Baer properties on different structures of a ring.

According to Krempa [12], a monomorphism α of a ring R is called to be rigid if $a\alpha(a) = 0$ implies a = 0 for $a \in R$. A ring R is said to be α -rigid if there exists a rigid monomorphism α of R. Nasr-Isfahani et al. [14] generalized α -rigid ring to α -weakly rigid ring and used it to transfer the quasi-Baer property and p.q.-Baer property of an α -weakly rigid ring R to its extensions such as the skew polynomial ring $R[x;\alpha,\delta]$, skew Laurent polynomial ring $R[x, x^{-1};\alpha]$, skew power series ring $R[[x;\alpha]]$ and skew Laurent power series ring $R[[x, x^{-1};\alpha]]$.

A subset S of a ring R is called α -set if S is a α -stable set, i.e. $\alpha(S) \subseteq S$. α -Baer ring was defined by Han [6] as a ring in which the right annihilator of every α -set (resp. α -ideal) is generated by an idempotent is called α -Baer ring (resp. α -quasi-Baer ring). Also a ring R is called right (or left) α -p.q.-Baer (resp. right or left p.p.-ring) if the right (or left) annihilator of every right (or left) principal α -ideal (resp. α -element) is generated by an idempotent. R is called α -p.q.-Baer ring (resp. right or left p.p. ring) if it is both right α -p.q.-Baer and left α -p.q.-Baer. In [6] Han defined and analyzed the behavior of skew polynomial ring over the above mentioned properties for α -rigid ring.

In the present article we study the α -quasi-Baerness and α -p.q.-Baerness for an α -weakly rigid ring R and some of its extensions such as skew polynomial ring $R[x;\alpha]$, Ore extension $R[x;\alpha,\delta]$, skew power series ring $R[[x;\alpha]]$ and find some connectedness between an α -weakly rigid ring R and its extensions through some results which are a generalization of the results provided in [6], [14]. Further, we also show the same results for a quasi α -Armendariz ring R.

Ore extension with $\delta = 1$ over α -quasi-Baer and α -p.q. -Baer ring

In this section we extend the results of [6] to α -weakly rigid ring. Further we define the notion of quasi α -Armendariz ring as a generalization of quasi-Armendariz ring. Also we prove the same results for quasi α -Armendariz ring. Recall from [14] a ring R is called α -weakly rigid if for each $a, b \in R, a\alpha(Rb) = 0$ if and only if aRb = 0. α -weakly rigid ring is a generalization of α -rigid ring and α -compatible ring. Now we give some examples to show that an α -weakly rigid ring R need not to be α -rigid.

Example 2.1 Let Q be a ring of rational numbers then $M_2(Q)$ is a prime ring. Suppose α be an automorphism of $M_2(Q)$ which is defined as follows:

$$\alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

for each $a, b, c, d \in Q$. Since $M_2(Q)$ is a prime ring and α is an automorphism of $M_2(Q)$, so $M_2(Q)$ is α -weakly rigid ring [14, Example

2.14]. Now we check that this ring is α -rigid or not. Take $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in M_2(Q)$,

then

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \alpha \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $\int \frac{\int durua}{\int durua} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \neq 0. \text{ Thus } M_2(Q) \text{ is not } \alpha \text{ -rigid.}$

Example 2.2 We consider a ring R as

$$R = \left\{ \begin{pmatrix} a & t \\ 0 & a \end{pmatrix} | a \in \mathbb{Z}, t \in Q \right\}$$

where Z and Q are the set of all integers and set of all rational numbers, respectively. Then R is a commutative ring. Let $\alpha: R \to R$ be an automorphism of R defined by

$$\alpha \left(\begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} a & t/2 \\ 0 & a \end{pmatrix}.$$

By [8, Theorem 1], R is not α -rigid ring. Now suppose any arbitrary $\begin{pmatrix} a & p \\ 0 & a \end{pmatrix}, \begin{pmatrix} b & q \\ 0 & b \end{pmatrix}$ and $\begin{pmatrix} c & r \\ 0 & c \end{pmatrix} \in R$ such that $\begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \alpha \left(\begin{pmatrix} b & q \\ 0 & b \end{pmatrix} \begin{pmatrix} c & r \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$

It follows that

$$\begin{pmatrix} abc & \frac{abr+acq}{2}+bcp\\ 0 & abc \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}.$$

This gives abc = 0 and $\frac{abr + acq}{2} + bcp = 0$, which leads to the

following:

1. a = 0 and b = 02. a = 0 and c = 0

3. b = 0 and c = 0

4.
$$a = 0 = b = c$$

By considering that either of the above cases hold valid and true we find (a + b)(a + b) = (a + b)

$$\begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \begin{pmatrix} b & q \\ 0 & b \end{pmatrix} \begin{pmatrix} c & r \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus R is α -weakly rigid ring.

For a ring R with an endomorphism α , there exists an endomorphism of $R[x;\alpha]$ which extends α . For example, consider a map $\overline{\alpha}$ on $R[x;\alpha]$ defined by $\overline{\alpha}(f(x)) = \alpha(a_0) + \alpha(a_1)x + \ldots + \alpha(a_n)x^n$ for all $f(x) = a_0 + a_1x + \ldots + a_nx^n \in R[x;\alpha]$. Then $\overline{\alpha}$ is an endomorphism of $R[x;\alpha]$ and $\overline{\alpha}(a) = \alpha(a)$ for all $a \in R$, that means $\overline{\alpha}$ is an extension of $\alpha \cdot \overline{\alpha}$ is called the extended endomorphism of α . Here, we shall denote the extended map $\overline{\alpha}: R[x;\alpha] \to R[x;\alpha]$ by α .

Now, we begin our main results with Theorem 2.2 but first we give Lemma 2.1 which is required to prove the main Theorems.

Lemma 2.1 Let R be an α -weakly rigid ring and $e \in R$ a right semicentral idempotent of R. Then for positive integer m, $e\alpha^m(r) = e\alpha^m(re)$.

Proof. Since *e* be a right semicentral idempotent of *R* so eR = eRewhich implies er(1-e) = 0 for all $e \in R$. It follows that $e\alpha^m(r(1-e)) = 0$ since *R* be an α -weakly rigid ring. Thus $e\alpha^m(r) = e\alpha^m(re)$.

Theorem 2.2 Let R be an α -weakly rigid ring. Then the following conditions are equivalent:

1. *R* is an α -quasi-Baer ring;

2. $R[x; \alpha]$ is a quasi-Baer ring;

3. $R[x;\alpha]$ is an α -quasi-Baer ring for every extended α - automorphism of $R[x;\alpha]$.

Proof. (1) \Rightarrow (2) Suppose *R* is α -quasi-Baer and *I* be an arbitrary ideal of $R[x; \alpha]$. Consider the set I_0 of all the leading coefficients of elements

in *I* i.e. $I_0 = \{a_n \in R \mid f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I\}$. Then I_0 is an ideal of R. Note that I_0 is an lpha-ideal of R, since for $f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I$ and $g(x) = x \in R$, we have $g(x)f(x) = \alpha(a_n)x^{n+1} + \sum_{i=0}^{n-1} \alpha(a_i)x^{i+1} \in I$ and so $\alpha(a_n) \in I_0$. Thus I_0 is an α -ideal of R. Since R is α -quasi-Baer, $l_R(I_0) = Re$ for some right semicentral idempotent $e \in R$ which gives $ea_n = 0$ for all $a_n \in I_0$. $R[x;\alpha]e = l_{R[x;\alpha]}(I).$ Now show any $f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I$ we have $a_n \in I_0$, so $ea_n = 0$. Therefore $ef(x) = e(\sum_{i=0}^{n-1} a_i x^i) = ea_{n-1} x^{n-1} + \sum_{i=0}^{n-2} a_i x^i$. Since $ea_{n-1} \in I_0$, we get $ea_{n-1} = eea_{n-1} = 0$. Continuing this way we get ef(x) = 0 and so $R[x;\alpha]e \subseteq l_{R[x;\alpha]}(I). \text{ Suppose } g(x) = \sum_{j=0}^{m} b_j x^j \in l_{R[x;\alpha]}(I), \text{ so for}$ each $f(x) = \sum_{i=0}^{n} a_i x^i \in I$ and $r \in R$, g(x)rf(x) = 0. Therefore $b_m \alpha^m(ra_n) = 0$ for each $r \in R$ which implies that $b_m Ra_n = 0$ since R is so $b_m = b_m e$. α -weakly rigid ring, Now $g(x)rf(x) = b_m x^m rf(x) + \sum_{i=0}^{m-1} b_i x^i rf(x) = 0.$ It follows that $\sum_{i=0}^{m-1} b_{i} x^{j} r f(x) = 0$ since $b_m x^m rf(x) = b_m ex^m rf(x) = b_m e\alpha^m(e)x^m rf(x) = b_m ex^m erf(x) = 0$ by

Lemma 2.1. In the same way we find that $b_{m-1} = b_{m-1}e$. Continuing this way we get for each j $b_j = b_j e$, so g = ge which gives $l_{R[x;\alpha]}(I) \subseteq R[x;\alpha]e$. Hence $R[x;\alpha]$ is quasi-Baer.

 $(2) \Rightarrow (3)$ It is clear.

 $(3) \Rightarrow (1) \text{ Suppose } R[x;\alpha] \text{ is } \alpha \text{-quasi-Baer and } \alpha \text{-weakly rigid.}$ Let I be any α -ideal of R. Then by [6, Lemma 1.7] $R[x;\alpha]I$ is an α -ideal of $R[x;\alpha]$. Since $R[x;\alpha]$ is α -quasi-Baer, $l_{R[x;\alpha]}(R[x;\alpha]I) = R[x;\alpha]e$ for some idempotent $e(x) = \sum_{i=0}^{n} \in R[x;\alpha]$. Thus by [14, Lemma 3.5] $l_{R[x;\alpha]}(R[x;\alpha]I) = l_{R}(I)[x;\alpha] = R[x;\alpha]e(x)$ which implies that $e_{i} \in l_{R}(I)$ for all i. Again by [14, Lemma 3.5] *Journal of Mathematical Sciences & Mathematics Education Vol. 8 No. 1* 16 $l_R(I) = l_R(I)[x;\alpha] \cap R = R[x;\alpha]e(x) \cap R$ it follows that for any $a \in l_R(I)$, $a = ae_0$. Hence, R is α -quasi-Baer.

Corollary 2.3 ([Theorem 2.3]6) Let R be a ring with an

endomorphism α and let Λ_{α} be the set of all extended endomorphisms on $R[x; \alpha]$ of α . If R is α -rigid, then the following are equivalent:

1. R is α -quasi-Baer; **Journal** $R[x; \alpha]$ is quasi-Baer;

3. $R[x;\alpha]$ is α -quasi-Baer for all $\alpha \in \Lambda_{\alpha}$.

Theorem 2.4 Let R be an α -weakly rigid ring. Then the following conditions are equivalent:

1. R is left α -p.q.-Baer;

2. $R[x;\alpha]$ is a left p.q.-Baer ring;

3. $R[x; \alpha]$ is a left α -p.q.-Baer ring for every extended α - automorphism of $R[x; \alpha]$.

Proof. (1) \Rightarrow (2) Let R be α -weakly rigid left α -p.q.-Baer ring and I be a left principal ideal of $R[x;\alpha]$ which is generated by $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x; \alpha]$ i.e. $I = \{f(x)h(x) \mid f(x) \in R[x; \alpha]\}$. Note that I_0 is a left ideal of R which is generated by h_0, h_1, \ldots, h_n i.e. $I_0 = \{ rh_i \mid r \in R \}$. g(x) = xTake $g(x)Rh(x) = xRh(x) = \sum_{i=0}^{n} \alpha(Rh_i)x^{i+1}$ and so $\alpha(Rh_i) \in I_0$ for each *i*. Thus I_0 is an left principal α -ideal of R. Since R is α -p.q.-Baer, $l_R(Rh_i) = Re_i$ where e_i be right semicentral idempotents of R therefore $e_i Rh_i = 0$ for all *i*. Let $e = e_0 e_1 \dots e_n$ which implies *e* is also a right semicentral idempotent of R. Thus by [14, Corollary 3.3] e is a right $R[x;\alpha]$. semicentral idempotent of We show that For $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x; \alpha]$, $l_{R[x;\alpha]}(R[x;\alpha]h(x)) = R[x;\alpha]e.$ eh(x) = 0 which implies ef(x)h(x) = ef(x)eh(x) = 0 for any $f(x) \in R[x;\alpha]$. Therefore $R[x;\alpha]e \subseteq l_{R[x;\alpha]}(R[x;\alpha]h(x))$. Again $f(x) = \sum_{i=0}^{m} a_{j} x^{j} \in l_{R[x;\alpha]}(R[x;\alpha]h(x)).$ suppose any Then

 $f(x)R[x;\alpha]h(x) = 0$ which implies f(x)Rh(x) = 0 it follows that $a_jrh_i = 0$ for all $r \in R$ from [14, Theorem 3.9]. Thus $a_j \in l_R(Rh_i) = Re_i$ which gives $a_j = a_j e$ so f = f e and therefore $l_{R[x;\alpha]}(R[x;\alpha]h(x)) = R[x;\alpha]e$. Hence $R[x;\alpha]$ is left p.q.-Baer.

- $(2) \Rightarrow (3)$ It is straightforward.
- $(3) \Rightarrow (1)$ Similar to Theorem 2.2

which is a generalization of α -skew Armendariz ring has been introduced in [8] which is a generalization of α -rigid ring and α -Armendariz ring. A ring R is said to be α -skew Armendariz ring, if for $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x; \alpha]$ the condition pq = 0 implies $a_i \alpha^i(b_j) = 0$ for all i and j.

The Armendariz property of rings was extended to skew polynomial rings in [10]. Following Hong et al [10], a ring R is called α -Armendariz if for $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x;\alpha]$ the condition pq = 0 implies $a_i b_j = 0$ for all i and $j \cdot \alpha$ -Armendariz ring is a generalization of α -rigid ring and Armendariz ring. Hong et al [10] proved that an α -Armendariz ring is α -skew Armendariz.

In [3] Baser and Kwak introduced the concept of α -quasi Armendariz ring. A ring R is called quasi-Armendariz ring with the endomorphism α (or simply α -quasi Armendariz) if for $p(x) = a_0 + a_1 x + \dots + a_m x^m, q(x) = b_0 + b_1 x + \dots + b_n x^n$ in $R[x;\alpha]$ satisfy $p(x)R[x;\alpha]q(x) = 0$, implies $a_iR[x;\alpha]b_i = 0$ for all $0 \le i \le m$ and $0 \le j \le n$ or equivalently, $a_i R \alpha^t(b_j) = 0$ for any nonnegative integer t and all i, j. Baser and Kwak [3] also showed that every α -quasi Armendariz ring is α -skew quasi Armendariz in case that α is an epimorphism, but the converse does not hold, in general. Motivated by [3], Pourtaherian and Rakhimov [15] introduced quasi α -Armendariz ring which is a generalization of quasi-Armendariz ring. A ring R is called a quasi α -Armendariz (or simply q. α -Armendariz) ring if whenever $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{i=0}^{n} b_j x^j$ in $R[x;\alpha]$ satisfy $pR[x;\alpha]q=0$, we have $a_iRb_i=0$ for all *i* and *j*. It is easy to see that an α -rigid ring is quasi α -Armendariz.

Here we refer to an Example from [15] that describes about a quasi α -Armendariz ring which is not α -rigid.

Given a ring R and a bimodule ${}_{R}M_{R}$. The trivial extension of R by M is the ring $T(R,M) = R \bigoplus M$ with the usual addition and multiplication defined as follows:

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2)$$

Example 2.3 (15, Example 3) Let R = T(Z,Q) be the trivial

extension of Z by Q, with automorphism $\alpha : R \to R$ defined by $\alpha((a,s)) = (a,s/2)$. The ring R is quasi α -Armendariz but is not α -rigid.

Now we show that a quasi Armendariz ring need not be an α -weakly rigid ring through the following example.

Example 2.4 Let $R = \{(a,b) \in \mathbb{Z} \bigoplus \mathbb{Z} \mid a \equiv b \pmod{2}\}$ be a ring

which is commutative reduced ring [9, Example 9], so R is a semiprime ring. Thus R is quasi Armendariz but not α -rigid. Now we check that R is an α weakly rigid ring or not. Define $\alpha : R \to R$, such that $\alpha((a,b)) = (b,a)$ an automorphism of R. Let $(0,2), (2,0) \in R$, then

$$(0,2)\alpha((2,0)(2,0)) = (0,2)\alpha(4,0) = 0$$
,

while

 $(0,2)(2,0)(2,0) = (0,8) \neq 0$,

Thus it is clear that R is not α -weakly rigid ring.

To prove the results for a quasi α -Armendariz ring we need to construct Lemma which is given as follows

Lemma 2.5 Let R be a quasi α -Armendariz ring, then the following conditions hold:

1. If arb = 0 then $\alpha^n(a)rb = 0$.

2. If $a\alpha^m(rb) = 0$ then arb = 0.

where $a, r, b \in R$ and m, n be some positive integers.

Proof. (1) Suppose arb = 0 and $f(x) = \alpha(a)x, g(x) = bx \in R[x; \alpha]$. Then $f(x)rg(x) = (\alpha(a)x)r(bx) = \alpha(a)\alpha(rb)x^2 = \alpha(arb)x^2 = 0$ which implies $\alpha(a)rb = 0$ or $\alpha^n(a)rb = 0$, since R is quasi α -Armendariz.

(2) Consider $a\alpha^m(rb) = 0$ and $f(x) = ax^m, g(x) = bx \in R[x; \alpha]$ then $f(x)rg(x) = a\alpha^m(rb)x^{m+1} = 0$. Thus arb = 0 since R is quasi α -Armendariz.

Theorem 2.6 Let R be a quasi α -Armendariz ring. If R is α - quasi-Baer ring then $R[x;\alpha]$ is a quasi-Baer ring.

CourseProof. Let R be a quasi α -Armendariz and α -quasi-Baer ring, and I be any arbitrary ideal of $R[x;\alpha]$. Consider I_0 be the set of all the coefficients of elements of I. Observe that I_0 is an α -ideal of R since for $f(x) = \sum_{i=0}^{n} a_i x^i \in I$ and $g(x) = x \in R$, we have $g(x)f(x) = \sum_{i=0}^{n} \alpha(a_i) x^{i+1} \in I$ and so $\alpha(a_i) \in I_0$ for each *i*. Thus I_0 is an α -ideal of R, which gives $l_R(I_0) = Re$ for some right semicentral idempotent $e \in R$ i.e. $ea_i = 0$ for any $a_i \in I_0$. Now we show that Suppose $f(x) = \sum_{i=0}^{n} a_i x^i \in I$, $l_{R[x;\alpha]}(I) = R[x;\alpha]e$. so $ef(x) = e(\sum_{i=0}^{n} a_i x^i) = \sum_{i=0}^{n} (ea_i) x^i = 0$ so $R[x; \alpha] e \subseteq l_{R[x;\alpha]}(I)$. Again suppose $g(x) = \sum_{j=0}^{m} b_j x^j \in l_{R[x;\alpha]}(I)$ which implies g(x) rf(x) = 0, it follows that $b_i ra_i = 0$ since R is quasi α -Armendariz. Then $b_i \in l_R(a_i) = Re$ which gives $b_i = b_i e$. Thus g = ge and therefore $l_{R[x;\alpha]}(I) \subseteq R[x;\alpha]e$. Hence $R[x;\alpha]$ is a quasi-Baer ring.

Theorem 2.7 Let R be a quasi α -Armendariz ring. If R is left α - p.q.-Baer ring then $R[x;\alpha]$ is a left p.q.-Baer ring.

Proof. Let R be quasi α -Armendariz left α -p.q.-Baer ring and I be a left principal ideal of $R[x;\alpha]$ which is generated by $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x;\alpha]$ i.e. $I = \{f(x)h(x) \mid f(x) \in R[x;\alpha]\}$. Note that I_0 is a left ideal of R which is generated by h_0, h_1, \dots, h_n i.e. $I_0 = \{rh_i \mid r \in R\}$. Take g(x) = x, $g(x)h(x) = xh(x) = \sum_{i=0}^{n} \alpha(h_i)x^{i+1}$ and so $\alpha(h_i) \in I_0$ for each i. Thus I_0 is an left principal α -ideal of R.

Since R is α -p.q.-Baer so $l_R(Rh_i) = Re_i$ where e_i be right semicentral idempotents of R. Let $e = e_0e_1\dots e_n$ which implies e is also a right semicentral idempotent of R. We show that $l_{R[x;\alpha]}(I) = R[x;\alpha]e$. For any

$$\begin{split} h(x) &= \sum_{i=0}^{n} h_{i} x^{i} \in R[x;\alpha] \\ erh &= e(\sum_{i=0}^{n} (rh_{i}) x^{i}) = \sum_{i=0}^{n} (e = e_{0}e_{1} \dots e_{n})(rh_{i}) x^{i} \quad \text{which} \quad \text{implies} \\ erh &= 0 \quad \text{Thus} \quad R[x;\alpha]e \subseteq l_{R[x;\alpha]}(R[x;\alpha]h(x)) \quad \text{Again suppose any} \\ f(x) &= \sum_{j=0}^{m} a_{j} x^{j} \in l_{R[x;\alpha]}(R[x;\alpha]h(x)) \quad \text{Then} \quad f(x)R[x;\alpha]h(x) = 0 \\ \text{which implies} \quad f(x)Rh(x) = 0 \quad \text{it follows that} \quad a_{j}rh_{i} = 0 \quad \text{for all} \quad r \in R \quad \text{Thus} \\ a_{j} \in l_{R}(Rh_{i}) = Re_{i} \quad \text{which} \quad \text{gives} \quad a_{j} = a_{j}e \quad \text{so} \quad f = fe \quad \text{and} \quad \text{therefore} \\ l_{R[x;\alpha]}(R[x;\alpha]h(x)) = R[x;\alpha]e \quad \text{Hence} \quad R[x;\alpha] \quad \text{is left p.q.-Baer.} \end{split}$$

Ore extension over lpha -quasi-Baer and lpha -p.q.-Baer ring

This section discusses about Ore extensions of α -quasi-Baer and α -p.q.-Baer rings. In [9] Hong et al. have shown that if R is an α -rigid ring, then R is Baer if and only if $R[x; \alpha, \delta]$ is a Baer ring. Nasr-Isfahani et al. [14] extended this result for α -weakly rigid ring to quasi-Baer and p.q.-Baer ring. Here we generalize these results to α -quasi-Baer and α -p.q.-Baer ring.

Recall from [13] an ideal I of a ring R with an automorphism α and an α -derivation δ is called an (α, δ) -ideal of R if $\alpha(I) = I$ and $\delta(I) \subseteq I$. A ring R with an automorphism α and an α -derivation δ is called an (α, δ) -quasi-Baer if the left annihilator of every (α, δ) -ideal is generated by an idempotent of R.

To prove the main results of this section we need the following Lemma which is a extension of [6, Lemma 1.1].

Lemma 3.1 Let R be a ring with an automorphism α and an α - derivation δ . Then

1. If I is a right (α, δ) -ideal of R, then RI is a right (α, δ) -ideal of R;

2. If I is a left (α, δ) -ideal of R, then IR is a left (α, δ) -ideal of R.

Proof. It follows from [6, Lemma 1.1].

Lemma 3.2 Let R be a ring, α be an automorphism and δ an α -derivation of R with $\alpha\delta = \delta\alpha$. Then the following conditions hold:

1. If *I* be an (α, δ) -ideal of *R* then $IR[x; \alpha, \delta]$ be an (α, δ) -ideal of $R[x; \alpha, \delta]$;

2. If *I* be a right principal (α, δ) -ideal of *R* then $IR[x; \alpha, \delta]$ be a right principal (α, δ) -ideal of $R[x; \alpha, \delta]$;

3. If *I* be a left principal (α, δ) -ideal of *R* then $R[x; \alpha, \delta]I$ be a left principal (α, δ) -ideal of $R[x; \alpha, \delta]$.

For a ring R with an automorphism α and α -derivation δ with $\alpha\delta = \delta\alpha$, there exists an α -derivation on $R[x; \alpha, \delta]$ which extends δ . For example, consider the automorphism $\overline{\alpha}$ and the $\overline{\alpha}$ -derivation $\overline{\delta}$ on $R[x; \alpha], \delta$ defined by

$$\alpha(f(x)) = \alpha(a_0) + \alpha(a_1)x + \dots + \alpha(a_n)x^n$$

$$\overline{\delta}(f(x)) = \delta(a_0) + \delta(a_1)x + \dots + \delta(a_n)x^n$$

for all $f(x) = a_0 + a_1x + \dots + a_nx^n \in R[x; \alpha, \delta]$ and

$$\overline{\alpha}(r) = \alpha(r), \overline{\delta}(r) = \delta(r)$$
 for all $r \in R$. We shall denote the extended map

 $\overline{\alpha}: R[x; \alpha, \delta] \to R[x; \alpha, \delta]$ and $\overline{\delta}: R[x; \alpha, \delta] \to R[x; \alpha, \delta]$ by δ , and the image of $f \in R[x; \alpha, \delta]$ by $\alpha(f), \delta(f)$, respectively.

Theorem 3.3 Let R be an (α, δ) -weakly rigid ring, α be an automorphism and δ an α -derivation of R with $\alpha\delta = \delta\alpha$. Then the following conditions are equivalent:

- 1. *R* is an (α, δ) -quasi-Baer ring;
- 2. $R[x; \alpha, \delta]$ is an α -quasi-Baer ring;

3. $R[x; \alpha, \delta]$ is an (α, δ) -quasi-Baer ring for every extended α - derivation δ of $R[x; \alpha, \delta]$.

Proof. (1) \Rightarrow (2) Let R be an α -weakly rigid and (α, δ) -quasi-Baer ring, and I be any α -ideal of $R[x; \alpha, \delta]$. Suppose that I_0 be an α ideal of R which is a set of all the leading coefficients of polynomials in I i.e. $I_0 = \{a_n \in R \mid f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I\}$. Now first we show that I_0 is a (α, δ) -ideal of R. Take any $g(x) = x \in R[x; \alpha, \delta]$ and

$$\begin{split} f(x) &= \sum_{i=0}^{n} a_i x^i \in I ,\\ g(x) f(x) &= x f(x) = \alpha(a_n) x^{n+1} + \sum_{i=0}^{n-1} \alpha(a_i) x^{i+1} + \delta(a_n) x^n + \sum_{i=0}^{n-1} \delta(a_i) x^i \in I \\ \text{. which gives } \delta(a_n) &\in I_0 \text{. Therefore } I_0 \text{ is an } (\alpha, \delta) \text{-ideal of } R \text{. Since } R \text{ is } \\ \text{an } (\alpha, \delta) \text{-quasi-Baer ring so } l_R(I_0) &= Re \text{ for any right semicentral} \\ \text{idempotent } e \in R \text{ which implies } eI_0 = 0 \text{. For } f(x) &= \sum_{i=0}^{n} a_i x^i \in I ,\\ ef(x) &= e \sum_{i=0}^{n} a_i x^i = 0 \text{. Thus } R[x; \alpha, \delta] e \subseteq l_{R[x; \alpha, \delta]}(I) \text{. Again suppose} \\ g(x) &= \sum_{j=0}^{m} b_j x^j \in l_{R[x; \alpha, \delta]}(I) \text{ then } g(x) rf(x) = 0 \text{ which implies} \\ b_j ra_i &= 0 \text{ since } R \text{ is } \alpha \text{-weakly rigid (from the proof of Theorem 2.2). Then} \\ b_j \in l_R(a_i) = Re, \text{ so } b_j = b_j e \text{ and thus } g = ge \text{. Therefore} \\ l_{R[x; \alpha, \delta]}(I) \subseteq R[x; \alpha, \delta] e \text{. Hence } R[x; \alpha, \delta] \text{ is } \alpha \text{-quasi-Baer.} \\ (2) &\Rightarrow (3) \text{ It is straightforward.} \\ (3) &\Rightarrow (1) \text{ Similar to Theorem 2.2.} \end{split}$$

Corollary 3.4 ([theorem 3.4]14) Let R be an α -weakly rigid ring. If R is a quasi-Baer ring then $R[x; \alpha, \delta]$ is a quasi-Baer ring.

Corollary 3.5 ([theorem 3.6]14) Let R be an α -weakly rigid ring. If $R[x; \alpha, \delta]$ is a quasi-Baer ring then R is a quasi-Baer ring.

Now we focus on extending the quasi α -Armendariz property of a skew polynomial rings, as described in section 2, to Ore extension.

Definition 3.6 A ring R is called a quasi α -Armendariz ring if whenever $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x; \alpha, \delta]$ satisfy $pR[x; \alpha, \delta]q = 0$, we have $a_i R b_j = 0$ for all i and j.

Here, we introduce the concept of (α, δ) -p.q. Baer ring which is a generalization of α -quasi-Baer, (α, δ) -quasi-Baer and α -p.q.Baer by the following definition:

Definition 3.7 A ring R with an automorphism α and an α derivation δ is called an (α, δ) -p.q.-Baer if the left annihilator of every left principal (α, δ) -ideal is generated by an idempotent of R.

Theorem 3.8 Let R be an (α, δ) -weakly rigid ring, α be an automorphism and δ an α -derivation of R with $\alpha\delta = \delta\alpha$. Then the following conditions are equivalent:

- 1. *R* is an (α, δ) -p.q.-Baer ring;
- 2. $R[x; \alpha, \delta]$ is an α -p.q.-Baer ring;
- 3. $R[x; \alpha, \delta]$ is an (α, δ) -p.q.-Baer ring for every extended α -

derivation δ of $R[x; \alpha, \delta]$.

Proof. (1) \Rightarrow (2) Let R be an α -weakly rigid (α, δ) -quasi-Baer ring and I be a left principal α -ideal of $R[x; \alpha, \delta]$ which is generated by $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x; \alpha, \delta]$ i.e. $I = \{f(x)h(x) \mid f(x) \in R[x; \alpha, \delta]\}$. Note that I_0 is a left ideal of R which is generated by h_0, h_1, \dots, h_n i.e. $I_0 = \{rh_i \mid r \in R\}$. Take g(x) = x, $g(x)rh(x) = xrh(x) = \sum_{i=0}^{n} \alpha(rh_i) x^{i+1} + \sum_{i=0}^{n} \delta(ra_i) x^i \in I$ and so $\delta(rh_i) \in I_0$ for each i. Thus I_0 is an left principal (α, δ) -ideal of R. The proof of the remaining part is similar to Theorem 2.3.

- $(2) \Rightarrow (3)$ It is straightforward.
- $(3) \Rightarrow (1)$ Similar to Theorem 2.3

Corollary 3.9 ([Theorem 3.9]14) Let R be an α -weakly rigid ring. If R is a left p.q.-Baer ring then $R[x;\alpha,\delta]$ is a left p.q.-Baer ring.

Corollary 3.10 ([Theorem 3.11]14) Let R be an α -weakly rigid ring. If $R[x; \alpha, \delta]$ is a left p.q.-Baer ring then R is a left p.q.-Baer ring.

Here, we show main results of this section using quasi (α, δ) -Armendariz ring in place of (α, δ) -weakly rigid ring. First, we define quasi (α, δ) -Armendariz ring which is an extension of quasi α -Armendariz ring.

Definition 3.11 A ring R is called a quasi (α, δ) -Armendariz ring if whenever $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x; \alpha, \delta]$ satisfy $pR[x; \alpha, \delta]q = 0$, we have $a_i R b_j = 0$ for all i and j.

Theorem 3.12 Let R be a quasi (α, δ) -Armendariz and (α, δ) quasi-Baer ring then $R[x; \alpha, \delta]$ is a α -quasi-Baer ring.

Proof. Let R be a quasi (α, δ) -Armendariz and (α, δ) -quasi-Baer ring, and I be any α -ideal of $R[x; \alpha, \delta]$. Suppose that I_0 be an α -ideal of R which is a collection of all the coefficients of elements of I. Now first we show that I_0 is a (α, δ) -ideal of R. Take any $g(x) = x \in R[x; \alpha, \delta]$ and $f(x) = \sum_{i=0}^{n} a_i x^i \in I ,$ $g(x)f(x) = xf(x) = \sum_{i=0}^{n} \alpha(a_i) x^{i+1} + \sum_{i=0}^{n} \delta(a_i) x^i \in I.$ Thus $\sum_{i=0}^{n} \delta(a_i) x^i \in I \text{ since } I \text{ is an } \alpha \text{ -ideal of } R[x; \alpha, \delta] \text{ so } \delta(a_i) \in I_0.$ Therefore I_0 is an (α, δ) -ideal of **R**. Since **R** is an (α, δ) -quasi-Baer ring so $l_R(I_0) = Re$ for any right semicentral idempotent $e \in R$ which implies $eI_0 = 0$. Now to show $l_{R[x;\alpha,\delta]}(I) = R[x;\alpha,\delta]e$. $f(x) = \sum_{i=0}^n a_i x^i \in I$ so $ef = e \sum_{i=0}^n a_i x^i = 0$. Suppose Thus $R[x; \alpha, \delta] e \subseteq l_{R[x;\alpha,\delta]}(I)$. Again suppose $g(x) = \sum_{j=0}^{m} b_j x^j \in l_{R[x;\alpha,\delta]}(I)$ then g(x)rf(x) = 0 which implies $b_i ra_i = 0$ since R is quasi (α, δ) -Armendariz. Then $b_i \in l_R(a_i) = Re$ so $b_i = b_i e$ and thus g = ge. Therefore $l_{R[x;\alpha,\delta]}(I) \subseteq R[x;\alpha,\delta]e$. Hence the result follows.

Theorem 3.13 Let R be a quasi (α, δ) -Armendariz and left (α, δ) p.q.-Baer ring then $R[x; \alpha, \delta]$ is a left α -p.q.-Baer.

Proof. Suppose R is a quasi (α, δ) -Armendariz and left (α, δ) -p.q.-Baer ring, and I be any left α -ideal of $R[x; \alpha, \delta]$ which is generated by $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x; \alpha, \delta]$ i.e. $I = \{f(x)h(x) \mid f(x) \in R[x; \alpha, \delta]\}$. Let I_0 be the set of all coefficients of elements of I. Then I_0 be a left α -ideal of R which is generated by h_0, h_1, \dots, h_n . Note that I_0 is a left (α, δ) -ideal of R by Theorem 2.6. Since R is a left (α, δ) -p.q.-Baer ring, $l_R(Rh_i) = Re_i$ where e_i be semicentral idempotents of R which implies

 $e_i Rh_i = 0$. Let $e = e_0 e_1 \dots e_n$ which implies e is also a semicentral idempotent of R. Now consider any $h(x) = \sum_{i=0}^n h_i x^i \in I$ so $erh(x) = \sum_{i=0}^n er(h_i x^i) = \sum_{i=0}^n (e_0 e_1 \dots e_n)r(h_i x^i) = 0$, since e_i is a semicentral idempotent of R. Therefore $R[x; \alpha, \delta]e \subseteq l_{R[x;\alpha,\delta]}$ $(R[x; \alpha, \delta]h(x))$. Again suppose $g(x) = \sum_{j=0}^m b_j x^j \in l_{R[x;\alpha,\delta]}(R[x; \alpha, \delta]h(x)) = 0$. It follows that $b_j rh_i = 0$ since R is quasi α -Armendariz. Thus $b_j \in l_R(Rh_i) = Re_i$ which gives $b_j = b_j e_0 e_1 \dots e_n$ and therefore g = ge implies $l_{R[x;\alpha,\delta]}(R[x; \alpha, \delta]h(x)) \subseteq R[x; \alpha, \delta]e$. Hence the result follows.

Skew power series over α -quasi-Baer ring

In this section we consider the relationship between the properties of being α -quasi-Baer of a ring R and of the skew power series ring $R[[x; \alpha]]$. Further we introduce the concept of quasi α -Armendariz of power series type which is an extension of quasi α -Armendariz ring and also an extension of skew α -Armendariz property of a ring R defined in [15].

Mathemati

Theorem 4.1 Let R be an α -weakly rigid ring. Then the following conditions are equivalent:

- 1. *R* is an α -quasi-Baer ring;
- 2. $R[[x; \alpha]]$ is a quasi-Baer ring;

3. $R[[x; \alpha]]$ is a α -quasi-Baer ring for every extended α - automorphism of $R[[x; \alpha]]$.

Proof. (1) \Rightarrow (2) Suppose R is α -quasi-Baer and I be an arbitrary ideal of $R[[x; \alpha]]$. Let I_0 be the set of leading coefficients of elements in I i.e. $I_0 = \{a_n \in R \mid \text{ there exists } a_n x^n + \sum_{i=n+1}^{\infty} \in I \text{, for some non-negative integer } n \text{ and } a_i \in R\}$. Then I_0 is an ideal of R. Note that I_0 is an α -ideal of R since for $f(x) = a_n x^n + \sum_{i=n+1}^{\infty} a_i x^i \in I$ and $g(x) = x \in R$, we have $g(x)f(x) = \alpha(a_n)x^n \sum_{i=n+1}^{\infty} \alpha(a_i)x^i \in I$ and so $\alpha(a_i) \in I_0$ for each i. Thus I_0 is an α -ideal of R, which gives $l_R(I_0) = Re$ for some idempotent

 $e \in R$. For any $f(x) = \sum_{i=n}^{\infty} a_i x^i \in I$ we have $a_n \in I_0$, so $ea_n = 0$. Therefore $ef(x) = e(\sum_{i=0}^{\infty} a_i x^i) = ea_n x + e(\sum_{i=n+1}^{\infty} a_i x^i)$. Since $ea_n \in I_0$, we get $ea_n = eea_n = 0$. Continuing in this way we get ef(x) = 0 and so $R[[x;\alpha]]e \subseteq l_{R[[x;\alpha]]}(I)$. Proof of remaining part of this Theorem is similar to Theorem 2.2 Hence $R[[x;\alpha]]$ is quasi-Baer.

 $\begin{array}{c} (2) \Rightarrow (3) \text{ It is clear.} \\ (3) \Rightarrow (1) \text{ Similar to Theorem 2.2.} \end{array}$

Corollary 4.2 ([Theorem 3.28]14) Let R be an α -weakly rigid ring. If R is a quasi-Baer ring then $R[[x; \alpha]]$ is a quasi-Baer ring.

Motivated by Pourtaherian and Rakhimov [15], we define quasi α - Armendariz ring of power series type as follows:

Definition 4.3 Let R be a ring and α be an endomorphism of R. Then R is called a quasi α -Armendariz ring of power series type if for $p = \sum_{i=0}^{\infty} a_i x^i, q = \sum_{i=0}^{\infty} b_j x^j \in R[[x;\alpha]], \ pR[x;\alpha]q = 0$ implies $a_i Rb_j = 0$ for all i and j.

Theorem 4.4 Let R be a quasi α -Armendariz of power series type. If R is α -quasi-Baer ring then $R[[x; \alpha]]$ is a quasi-Baer ring.

Proof. Let R be a quasi α -Armendariz of power series type and α quasi-Baer ring, and let I be any arbitrary ideal of $R[[x;\alpha]]$. Consider I_0 be
the set of all the coefficients of elements of I. Observe that I_0 is an α -ideal
of R since for $f(x) = \sum_{i=0}^{\infty} a_i x^i \in I$ and $g(x) = x \in R$, we have $g(x)f(x) = \sum_{i=0}^{\infty} \alpha(a_i)x^{i+1} \in I$ and so $\alpha(a_i) \in I_0$ for each i. Thus I_0 is
an α -ideal of R, which gives $l_R(I_0) = Re$ for some right semicentral
idempotent $e \in R$ i.e. $ea_n = 0$ for any $a_n \in I_0$. Now we show that $l_{R[[x;\alpha]]}(I) = R[[x;\alpha]]e$. Suppose $f(x) = \sum_{i=0}^{\infty} a_i x^i \in I$, so $ef(x) = \sum_{i=0}^{\infty} (ea_i)x^i = 0$ so $R[[x;\alpha]]e \subseteq l_{R[[x;\alpha]]}(I)$. Again suppose $g(x) = \sum_{j=0}^{\infty} b_j x^j \in l_{R[[x;\alpha]]}(I)$ which implies g(x)rf(x) = 0, it follows

that $b_i ra_i = 0$ since R is quasi α -Armendariz of power series type. Then $b_i \in l_R(a_i) = Re$ which gives $b_i = b_i e$. Thus g = ge and therefore $l_{R[[x;\alpha]]}(I) \subseteq R[[x;\alpha]]e$. Hence the result follows.

† M.R Khan, Ph.D., Jamia Millia Islamia, New Delhi, India. *‡ Prachi Juyal*, Ph.D., Jamia Millia Islamia, New Delhi, India.

Journal Of

References

• Æ

[1] Armendariz, E.P.: A note on extensions of Baer and p.p.-rings, Aust. Math. Soc. 18(1974), 470-473.

 \mathbf{enc} [2] Baser, M.; Harmanci, A. and Kwak, T.K.: Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc., 45 (2008), No. 2, 285-297.

athematics

[3] Baser, M. and Kwak, T.K.: Quasi-Armendariz property for skew polynomial rings, Comm. Korean Math. Soc., 26 (4) (2011), 557-573.

[4] Birkenmeier, G.F.; Kim, J.Y. and Park J.K.: Principally quasi-Baer rings, Comm. Algebra, 29 (2001), 639-660.

[5] Clark, W.E.: Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.

[6] Han, J.: Skew polynomial rings over σ -quasi-Baer and σ principally quasi-Baer rings, J. Korean Math. Soc., 42 (2005), No. 1, 53-63.

[7] Hirano Y.: On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure and App. Algebra, 168 (2002) 45-52.

[8] Hong, C.Y.; Kim, N.K. and Kwak, T.K.: On skew Armendariz rings, Comm. Algebra, 31 (1) (2003), 103-122.

[9] Hong, C.Y.; Kim, N.K. and Kwak, T.K.: Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.

[10] Hong, C.Y.; Kwak, T.K. and Rizvi S.T.: Extensions of generalized Armendariz rings Algebra Collog., 13 (2) (2006), 253-266.

[11] Kaplansky, I.: Rings of operators, W.A. Benjamin, New York, 1968.

[12] Krempa, J.: Some examples of reduced rings, *Algebra Colloq.*, 3 (4) (1996), 289-300.

[13] Nasr-Isfahani, A.R. and Moussavi, A.: Ore extension of skew Armendariz rings, *Comm. Algebra*, 36:2, 508-522.

[14] Nasr-Isfahani, A.R. and Moussavi, A.: On weakly rigid rings, *Glasgow. Math. J.* 51 (2009) 425-440.

Goccod [15] Pourtaherian, H. and Rakhimov, I.S.: On extended quasi-Armendariz rings, arXiv:1205.5845v1 [math.RA] 26 May 2012.

> Mathematical Sciences & Mathematics Education