Ore extension over α-quasi-Baer and α-p.q.-Baer rings

M.R. Khan, Ph.D. †
Prachi Juyal, Ph. D. ‡

Abstract

In this paper we extend some well known results of quasi-Baer and p.q.-Baer to α-quasi-Baer and α-p.q.-Baer using α-weakly rigid ring. Further, we investigate some results for quasi α-Armendariz ring and also we give some Examples to illustrate our theory.

Introduction

Throughout this paper R denotes an associative ring with identity, α is an endomorphism of R and δ an α-derivation of R, that is δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for all $a, b \in R$. Kaplansky [11] introduced Baer rings to abstract various prospects of AW^*-Algebra and von-Neumann Algebra. Quasi-Baer rings (i.e. rings in which the right annihilator of every ideal is generated by an idempotent) introduced by Clark [5], are used to characterize when finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The definition of quasi-Baer ring is left-right i.e. a ring R is left (quasi) Baer if and only if R is right (quasi) Baer.

As a generalization of quasi-Baer ring, G.F. Birkenmeier, J.Y. Kim, and J.K. Park [4] introduced the concept of principally quasi-Baer rings. A ring R is called principally quasi-Baer (or right p.q.-Baer) if the right annihilator of a principal right ideal of R is generated by an idempotent. The class of p.q.-Baer ring includes all Baer rings, quasi-Baer rings, abelian p.p. rings and bi-regular rings. Further a number of authors investigated quasi-Baer and p.q.-Baer properties on different structures of a ring.

According to Krempa [12], a monomorphism α of a ring R is called to be rigid if $\alpha\alpha(a) = 0$ implies $a = 0$ for $a \in R$. A ring R is said to be α-rigid if there exists a rigid monomorphism α of R. Nasr-Isfahani et al. [14] generalized α-rigid ring to α-weakly rigid ring and used it to transfer the quasi-Baer property and p.q.-Baer property of an α-weakly rigid ring R to its extensions such as the skew polynomial ring $R[x; \alpha, \delta]$, skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$, skew power series ring $R[[x; \alpha]]$ and skew Laurent power series ring $R[[x, x^{-1}; \alpha]]$.
A subset S of a ring R is called α-set if S is a α-stable set, i.e. $\alpha(S) \subseteq S$. α-Baer ring was defined by Han [6] as a ring in which the right annihilator of every α-set (resp. α-ideal) is generated by an idempotent is called α-Baer ring (resp. α-quasi-Baer ring). Also a ring R is called right (or left) α-p.q.-Baer (resp. right or left p.p.-ring) if the right (or left) annihilator of every right (or left) principal α-ideal (resp. α-element) is generated by an idempotent. R is called α-p.q.-Baer ring (resp. right or left p.p. ring) if it is both right α-p.q.-Baer and left α-p.q.-Baer. In [6] Han defined and analyzed the behavior of skew polynomial ring over the above mentioned properties for α-rigid ring.

In the present article we study the α-quasi-Baerness and α-p.q.-Baerness for an α-weakly rigid ring R and some of its extensions such as skew polynomial ring $R[x;\alpha]$, Ore extension $R[x;\alpha,\delta]$, skew power series ring $R[[x;\alpha]]$ and find some connectedness between an α-weakly rigid ring R and its extensions through some results which are a generalization of the results provided in [6], [14]. Further, we also show the same results for a quasi α-Armendariz ring R.

Ore extension with $\delta = 1$ over α-quasi-Baer and α-p.q.-Baer ring

In this section we extend the results of [6] to α-weakly rigid ring. Further we define the notion of quasi α-Armendariz ring as a generalization of quasi-Armendariz ring. Also we prove the same results for quasi α-Armendariz ring. Recall from [14] a ring R is called α-weakly rigid if for each $a, b \in R, a\alpha(Rb) = 0$ if and only if $aRb = 0$. α-weakly rigid ring is a generalization of α-rigid ring and α-compatible ring. Now we give some examples to show that an α-weakly rigid ring R need not to be α-rigid.

Example 2.1 Let Q be a ring of rational numbers then $M_2(Q)$ is a prime ring. Suppose α be an automorphism of $M_2(Q)$ which is defined as follows:

$$
\alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}
$$

for each $a, b, c, d \in Q$. Since $M_2(Q)$ is a prime ring and α is an automorphism of $M_2(Q)$, so $M_2(Q)$ is α-weakly rigid ring [14, Example...
Now we check that this ring is α-rigid or not. Take \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in M_2(Q) \), then

\[
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \alpha \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
\]

but \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \neq 0 \). Thus \(M_2(Q) \) is not α-rigid.

Example 2.2 We consider a ring \(R \) as

\[
R = \left\{ \begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \mid a \in \mathbb{Z}, t \in \mathbb{Q} \right\}
\]

where \(\mathbb{Z} \) and \(\mathbb{Q} \) are the set of all integers and set of all rational numbers, respectively. Then \(R \) is a commutative ring. Let \(\alpha : R \to R \) be an automorphism of \(R \) defined by

\[
\alpha \left(\begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} a & t/2 \\ 0 & a \end{pmatrix}.
\]

By [8, Theorem 1], \(R \) is not α-rigid. Now suppose any arbitrary \(\begin{pmatrix} a & p \\ 0 & a \end{pmatrix} \) and \(\begin{pmatrix} c & r \\ 0 & c \end{pmatrix} \in R \) such that

\[
\begin{pmatrix} a & t \\ 0 & a \end{pmatrix} \alpha \left(\begin{pmatrix} b & q \\ 0 & b \end{pmatrix} \begin{pmatrix} c & r \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

It follows that

\[
\begin{pmatrix} abc & abr + acq + bcp \\ 0 & abc \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

This gives \(abc = 0 \) and \(\frac{abr + acq}{2} + bcp = 0 \), which leads to the following:

1. \(a = 0 \) and \(b = 0 \)
2. \(a = 0 \) and \(c = 0 \)
3. $b = 0$ and $c = 0$
4. $a = 0 = b = c$

By considering that either of the above cases hold valid and true we find

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} q & c \\ 0 & b \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus R is α-weakly rigid ring.

For a ring R with an endomorphism α, there exists an endomorphism of $R[x; \alpha]$ which extends α. For example, consider a map $\overline{\alpha}$ on $R[x; \alpha]$ defined by $\overline{\alpha}(f(x)) = \alpha(a_0) + \alpha(a_1)x + \ldots + \alpha(a_n)x^n$ for all $f(x) = a_0 + a_1x + \ldots + a_n x^n \in R[x; \alpha]$. Then $\overline{\alpha}$ is an endomorphism of $R[x; \alpha]$ and $\overline{\alpha}(a) = \alpha(a)$ for all $a \in R$, that means $\overline{\alpha}$ is an extension of α. $\overline{\alpha}$ is called the extended endomorphism of α. Here, we shall denote the extended map $\overline{\alpha} : R[x; \alpha] \rightarrow R[x; \alpha]$ by $\overline{\alpha}$.

Now, we begin our main results with Theorem 2.2 but first we give Lemma 2.1 which is required to prove the main Theorems.

Lemma 2.1 Let R be an α-weakly rigid ring and $e \in R$ a right semicentral idempotent of R. Then for positive integer m,

$$e\alpha^m(r) = e\alpha^m(re).$$

Proof. Since e be a right semicentral idempotent of R so $eR = eRe$ which implies $er(1-e) = 0$ for all $e \in R$. It follows that $e\alpha^m(r(1-e)) = 0$ since R be an α-weakly rigid ring. Thus $e\alpha^m(r) = e\alpha^m(re)$.

Theorem 2.2 Let R be an α-weakly rigid ring. Then the following conditions are equivalent:

1. R is an α-quasi-Baer ring;
2. $R[x; \alpha]$ is a quasi-Baer ring;
3. $R[x; \alpha]$ is an α-quasi-Baer ring for every extended α-automorphism of $R[x; \alpha]$.

Proof. $(1) \Rightarrow (2)$ Suppose R is α-quasi-Baer and I be an arbitrary ideal of $R[x; \alpha]$. Consider the set I_0 of all the leading coefficients of elements
in I i.e. $I_0 = \{a_n \in R \mid f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I\}$. Then I_0 is an ideal of R. Note that I_0 is an α-ideal of R, since for
\[f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I \quad \text{and} \quad g(x) = x \in R, \]
we have
\[g(x)f(x) = \alpha(a_n)x^{n+1} + \sum_{i=0}^{n-1} \alpha(a_i)x^{i+1} \in I \quad \text{and so} \quad \alpha(a_n) \in I_0. \]
Thus I_0 is an α-ideal of R. Since R is α-quasi-Baer, $l_R(I_0) = Re$ for some right semicentral idempotent $e \in R$ which gives $ea_n = 0$ for all $a_n \in I_0$.
Now we show $R[x;\alpha]e = l_{R[x;\alpha]}(I)$. For any
\[f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I \quad \text{we have} \quad a_n \in I_0, \]
so $ea_n = 0$. Therefore
\[ef(x) = e(\sum_{i=0}^{n-1} a_i x^i) = ea_n x^n + \sum_{i=0}^{n-1} a_i x^i. \]
Since $ea_n \in I_0$, we get $ea_{n-1} = eea_{n-1} = 0$. Continuing this way we get $ef(x) = 0$ and so
\[R[x;\alpha]e \subseteq l_{R[x;\alpha]}(I). \]
Suppose $g(x) = \sum_{j=0}^{m-1} b_j x^j \in l_{R[x;\alpha]}(I)$, so for each $f(x) = \sum_{i=0}^{n} a_i x^i \in I$ and $r \in R$,
\[g(x)f(x) = b_m x^m + \sum_{j=0}^{m-1} b_j x^j f(x) = 0. \]
Therefore $b_m \alpha^m(ra_n) = 0$ for each $r \in R$ which implies that $b_m Ra_n = 0$ since R is α-weakly rigid ring, so $b_m = b_m e$. Now
\[g(x)f(x) = b_m x^m + \sum_{j=0}^{m-1} b_j x^j f(x) = 0. \]
It follows that
\[\sum_{j=0}^{m-1} b_j x^j f(x) = 0 \]
since
\[b_m x^m f(x) = b_m e \alpha^m (e) x^m f(x) = b_m e \alpha^m erf(x) = 0 \quad \text{by Lemma 2.1.} \]
In the same way we find that $b_{m-1} = b_{m-1} e$. Continuing this way we get for each $j \ b_j = b_j e$, so $g = ge$ which gives $l_{R[x;\alpha]}(I) \subseteq R[x;\alpha]e$.
Hence $R[x;\alpha]$ is quasi-Baer.

(2) \Rightarrow (3) It is clear.

(3) \Rightarrow (1) Suppose $R[x;\alpha]$ is α-quasi-Baer and α-weakly rigid.
Let I be any α-ideal of R. Then by [6, Lemma 1.7] $R[x;\alpha]I$ is an α-ideal of $R[x;\alpha]$. Since $R[x;\alpha]$ is α-quasi-Baer,
\[l_{R[x;\alpha]}(R[x;\alpha]I) = R[x;\alpha]e \quad \text{for some idempotent} \quad e(x) = \sum_{i=0}^{n} \in R[x;\alpha]. \]
Thus by [14, Lemma 3.5] $l_{R[x;\alpha]}(R[x;\alpha]I) = l_R(I[x;\alpha] = R[x;\alpha]e(x)$ which implies that $e_i \in l_R(I)$ for all i. Again by [14, Lemma 3.5]
Corollary 2.3 ([Theorem 2.3]6) Let \(R \) be a ring with an endomorphism \(\alpha \) and let \(\Lambda_{\alpha} \) be the set of all extended endomorphisms on \(R[x;\alpha] \) of \(\alpha \). If \(R \) is \(\alpha \)-rigid, then the following are equivalent:

1. \(R \) is \(\alpha \)-quasi-Baer;
2. \(R[x;\alpha] \) is quasi-Baer;
3. \(R[x;\alpha] \) is \(\alpha \)-quasi-Baer for all \(\alpha \in \Lambda_{\alpha} \).

Theorem 2.4 Let \(R \) be an \(\alpha \)-weakly rigid ring. Then the following conditions are equivalent:

1. \(R \) is left \(\alpha \)-p.q.-Baer;
2. \(R[x;\alpha] \) is a left p.q.-Baer ring;
3. \(R[x;\alpha] \) is a left \(\alpha \)-p.q.-Baer ring for every extended \(\alpha\)-automorphism of \(R[x;\alpha] \).

Proof. (1) \(\Rightarrow\) (2) Let \(R \) be \(\alpha\)-weakly rigid left \(\alpha \)-p.q.-Baer ring and \(I \) be a left principal ideal of \(R[x;\alpha] \) which is generated by \(h(x) = \sum_{i=0}^{n} h_{i}x^{i} \in R[x;\alpha] \) i.e. \(I = \{ f(x)h(x) \mid f(x) \in R[x;\alpha] \} \). Note that \(I_{0} \) is a left ideal of \(R \) which is generated by \(h_{0}, h_{1}, \ldots, h_{n} \) i.e. \(I_{0} = \{ rh_{i} \mid r \in R \} \). Take \(g(x) = x, \) \(g(x)Rh_{i} = xRh_{i} = \sum_{i=0}^{n} \alpha(Rh_{i})x^{i+1} \) and so \(\alpha(Rh_{i}) \in I_{0} \) for each \(i \).

Thus \(I_{0} \) is an left principal \(\alpha \)-ideal of \(R \). Since \(R \) is \(\alpha \)-p.q.-Baer, \(l_{R}(Rh_{i}) = Re_{i} \) where \(e_{i} \) be right semicentral idempotents of \(R \) therefore \(e_{i}Rh_{i} = 0 \) for all \(i \). Let \(e = e_{i}e_{j} \ldots e_{n} \) which implies \(e \) is also a right semicentral idempotent of \(R \). Thus by [14, Corollary 3.3] \(e \) is a right semicentral idempotent of \(R[x;\alpha] \). We show that \(l_{R[x;\alpha]}(R[x;\alpha]h(x)) = R[x;\alpha]e \). For \(h(x) = \sum_{i=0}^{n} h_{i}x^{i} \in R[x;\alpha] \), \(eh(x) = 0 \) which implies \(ef(x)h(x) = ef(x)eh(x) = 0 \) for any \(f(x) \in R[x;\alpha] \). Therefore \(R[x;\alpha]e \subseteq l_{R[x;\alpha]}(R[x;\alpha]h(x)) \). Again suppose any \(f(x) = \sum_{j=0}^{m} a_{j}x^{j} \in l_{R[x;\alpha]}(R[x;\alpha]h(x)) \). Then
The concept of α-skew Armendariz ring has been introduced in [8] which is a generalization of α-rigid ring and α-Armendariz ring. A ring R is said to be α-skew Armendariz ring if for $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x;\alpha]$ the condition $pq = 0$ implies $a_i\alpha'(b_j) = 0$ for all i and j.

The Armendariz property of rings was extended to skew polynomial rings in [10]. Following Hong et al [10], a ring R is called α-Armendariz if for $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x;\alpha]$ the condition $pq = 0$ implies $a_i b_j = 0$ for all i and j. α-Armendariz ring is a generalization of α-rigid ring and Armendariz ring. Hong et al [10] proved that an α-Armendariz ring is α-skew Armendariz.

In [3] Baser and Kwak introduced the concept of α-quasi Armendariz ring. A ring R is called quasi-α-Armendariz ring with the endomorphism α (or simply α-quasi Armendariz) if for $p(x) = a_0 + a_1 x + \ldots + a_m x^m, q(x) = b_0 + b_1 x + \ldots + b_n x^n$ in $R[x;\alpha]$ satisfy $p(x)R[x;\alpha]q(x) = 0$, implies $a_i R\alpha'(b_j) = 0$ for all $0 \leq i \leq m$ and $0 \leq j \leq n$ or equivalently, $a_i R\alpha'(b_j) = 0$ for any nonnegative integer t and all i, j. Baser and Kwak [3] also showed that every α-quasi Armendariz ring is α-skew quasi Armendariz in case that α is an epimorphism, but the converse does not hold, in general. Motivated by [3], Pourtaherian and Rakhimov [15] introduced quasi α-Armendariz ring which is a generalization of quasi-Armendariz ring. A ring R is called a quasi α-Armendariz (or simply q. α-Armendariz) ring if whenever $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x;\alpha]$ satisfy $pR[x;\alpha]q = 0$, we have $a_i Rb_j = 0$ for all i and j. It is easy to see that an α-rigid ring is quasi α-Armendariz.

Here we refer to an Example from [15] that describes about a quasi α-Armendariz ring which is not α-rigid.
Given a ring R and a bimodule $R \cdot M$. The trivial extension of R by M is the ring $T(R, M) = R \oplus M$ with the usual addition and multiplication defined as follows:

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2).$$

Example 2.3 (15, Example 3) Let $R = T(\mathbb{Z}, \mathbb{Q})$ be the trivial extension of \mathbb{Z} by \mathbb{Q}, with automorphism $\alpha : R \rightarrow R$ defined by $\alpha((a, s)) = (a, s/2)$. The ring R is quasi α-Armendariz but is not α-rigid.

Now we show that a quasi Armendariz ring need not be an α-weakly rigid ring through the following example.

Example 2.4 Let $R = \{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} | a \equiv b(\text{mod} \ 2)\}$ be a ring which is commutative reduced ring [9, Example 9], so R is a semiprime ring. Thus R is quasi Armendariz, but not α-rigid. Now we check that R is an α-weakly rigid ring or not. Define $\alpha : R \rightarrow R$, such that $\alpha((a, b)) = (b, a)$ an automorphism of R. Let $(0, 2), (2, 0) \in R$, then

$$(0, 2)\alpha((2, 0)(2, 0)) = (0, 2)\alpha(4, 0) = 0,$$

while

$$(0, 2)(2, 0)(2, 0) = (0, 8) \neq 0.$$

Thus it is clear that R is not α-weakly rigid ring.

To prove the results for a quasi α-Armendariz ring we need to construct Lemma which is given as follows

Lemma 2.5 Let R be a quasi α-Armendariz ring, then the following conditions hold:

1. If $arb = 0$ then $\alpha^n(a)rb = 0$.

2. If $a\alpha^n(rb) = 0$ then $arb = 0$.

where $a, r, b \in R$ and m, n be some positive integers.

Proof. (1) Suppose $arb = 0$ and $f(x) = \alpha(a)x, g(x) = bx \in R[x; \alpha]$. Then

$f(x)rg(x) = (\alpha(a)x)r(bx) = \alpha(a)\alpha(rb)x^2 = \alpha(arb)x^2 = 0$ which implies $\alpha(a)rb = 0$ or $\alpha^n(a)rb = 0$, since R is quasi α-Armendariz.
Consider $a \alpha^m(rb) = 0$ and $f(x) = ax^m, g(x) = bx \in R[x; \alpha]$ then $f(x)rg(x) = a \alpha^m(rb)x^{m+1} = 0$. Thus $arb = 0$ since R is quasi α-Armendariz.

Theorem 2.6 Let R be a quasi α-Armendariz ring. If R is α-quasi-Baer ring then $R[x; \alpha]$ is a quasi-Baer ring.

Proof. Let R be a quasi α-Armendariz and α-quasi-Baer ring, and I be any arbitrary ideal of $R[x; \alpha]$. Consider I_0 be the set of all the coefficients of elements of I. Observe that I_0 is an α-ideal of R since for $f(x) = \sum_{i=0}^n a_ix^i \in I$ and $g(x) = x \in R$, we have $g(x)f(x) = \sum_{i=0}^n \alpha(a_i)x^{i+1} \in I$ and so $\alpha(a_i) \in I_0$ for each i. Thus I_0 is an α-ideal of R, which gives $l_R(I_0) = Re$ for some right semicentral idempotent $e \in R$ i.e. $ae = 0$ for any $a_i \in I_0$. Now we show that $l_R[x; \alpha](I) = R[x; \alpha]e$. Suppose $f(x) = \sum_{i=0}^n a_ix^i \in I$, so $ef(x) = e(\sum_{i=0}^n a_ix^i) = \sum_{i=0}^n (ea_i)x^i = 0$ so $R[x; \alpha]e \subseteq l_R[x; \alpha](I)$. Again suppose $g(x) = \sum_{j=0}^m b_jx^j \in l_R[x; \alpha](I)$ which implies $g(x)rf(x) = 0$, it follows that $b_jra_i = 0$ since R is quasi α-Armendariz. Then $b_j \in l_R(a_i) = Re$ which gives $b_j = b_j e$. Thus $g = ge$ and therefore $l_R[x; \alpha](I) \subseteq R[x; \alpha]e$. Hence $R[x; \alpha]$ is a quasi-Baer ring.

Theorem 2.7 Let R be a quasi α-Armendariz ring. If R is left α-p.q.-Baer ring then $R[x; \alpha]$ is a left p.q.-Baer ring.

Proof. Let R be quasi α-Armendariz left α-p.q.-Baer ring and I be a left principal ideal of $R[x; \alpha]$ which is generated by $h(x) = \sum_{i=0}^n h_ix^i \in R[x; \alpha]$ i.e. $I = \{f(x)h(x) \mid f(x) \in R[x; \alpha]\}$. Note that I_0 is a left ideal of R which is generated by h_0, h_1, \ldots, h_n i.e. $I_0 = \{rh \mid r \in R\}$. Take $g(x) = x, g(x)h(x) = xh(x) = \sum_{i=0}^n \alpha(h_i)x^{i+1}$ and so $\alpha(h_i) \in I_0$ for each i. Thus I_0 is an left principal α-ideal of R.
Since \(R \) is \(\alpha \)-p.q.-Baer so \(l_R(Rh_i) = Re_i \) where \(e_i \) be right semicentral idempotents of \(R \). Let \(e = e_0e_1 \ldots e_n \) which implies \(e \) is also a right semicentral idempotent of \(R \). We show that \(l_{R[x,\alpha]}(I) = R[x;\alpha]e \). For any \(h(x) = \sum_{i=0}^{n} h_i x^i \in R[x;\alpha] \) \(erh = e(\sum_{i=0}^{n} (rh_i)x^i) = \sum_{i=0}^{n} (e = e_0e_1 \ldots e_n)(rh_i)x^i \) which implies \(erh = 0 \). Thus \(R[x;\alpha]e \subseteq l_{R[x,\alpha]}(R[x;\alpha]h(x)) \). Again suppose any \(f(x) = \sum_{i=0}^{n} a_i x^i \in l_{R[x,\alpha]}(R[x;\alpha]h(x)) \). Then \(f(x)R[x;\alpha]h(x) = 0 \) which implies \(f(x)Rh(x) = 0 \) if follows that \(a_j rh_j = 0 \) for all \(r \in R \). Thus \(a_j \in l_R(Rh_j) = Re_i \) which gives \(a_j = a_j e \) so \(f = fe \) and therefore \(l_{R[x,\alpha]}(R[x;\alpha]h(x)) = R[x;\alpha]e \). Hence \(R[x;\alpha] \) is left p.q.-Baer.

Ore extension over \(\alpha \)-quasi-Baer and \(\alpha \)-p.q.-Baer ring

This section discusses about Ore extensions of \(\alpha \)-quasi-Baer and \(\alpha \)-p.q.-Baer rings. In [9] Hong et al. have shown that if \(R \) is an \(\alpha \)-rigid ring, then \(R \) is Baer if and only if \(R[x;\alpha,\delta] \) is a Baer ring. Nasr-Isfahani et al. [14] extended this result for \(\alpha \)-weakly rigid ring to quasi-Baer and p.q.-Baer ring. Here we generalize these results to \(\alpha \)-quasi-Baer and \(\alpha \)-p.q.-Baer ring.

Recall from [13] an ideal \(I \) of a ring \(R \) with an automorphism \(\alpha \) and an \(\alpha \)-derivation \(\delta \) is called an \((\alpha,\delta) \)-ideal of \(R \) if \(\alpha(I) = I \) and \(\delta(I) \subseteq I \). A ring \(R \) with an automorphism \(\alpha \) and an \(\alpha \)-derivation \(\delta \) is called an \((\alpha,\delta) \)-quasi-Baer if the left annihilator of every \((\alpha,\delta) \)-ideal is generated by an idempotent of \(R \).

To prove the main results of this section we need the following Lemma which is a extension of [6, Lemma 1.1].

Lemma 3.1 Let \(R \) be a ring with an automorphism \(\alpha \) and an \(\alpha \)-derivation \(\delta \). Then

1. If \(I \) is a right \((\alpha,\delta) \)-ideal of \(R \), then \(RI \) is a right \((\alpha,\delta) \)-ideal of \(R \);
2. If \(I \) is a left \((\alpha,\delta) \)-ideal of \(R \), then \(IR \) is a left \((\alpha,\delta) \)-ideal of \(R \).

Proof. It follows from [6, Lemma 1.1].

Journal of Mathematical Sciences & Mathematics Education Vol. 8 No. 1 21
Lemma 3.2 Let \(R \) be a ring, \(\alpha \) be an automorphism and \(\delta \) an \(\alpha \)-derivation of \(R \) with \(\alpha \delta = \delta \alpha \). Then the following conditions hold:

1. If \(I \) be an \((\alpha, \delta) \)-ideal of \(R \) then \(IR[x; \alpha, \delta] \) be an \((\alpha, \delta) \)-ideal of \(R[x; \alpha, \delta] \);
2. If \(I \) be a right principal \((\alpha, \delta) \)-ideal of \(R \) then \(IR[x; \alpha, \delta] \) be a right principal \((\alpha, \delta) \)-ideal of \(R[x; \alpha, \delta] \);
3. If \(I \) be a left principal \((\alpha, \delta) \)-ideal of \(R \) then \(R[x; \alpha, \delta]I \) be a left principal \((\alpha, \delta) \)-ideal of \(R[x; \alpha, \delta] \).

For a ring \(R \) with an automorphism \(\alpha \) and \(\alpha \)-derivation \(\delta \) with \(\alpha \delta = \delta \alpha \), there exists an \(\alpha \)-derivation on \(R[x; \alpha, \delta] \) which extends \(\delta \). For example, consider the automorphism \(\alpha \) and the \(\alpha \)-derivation \(\delta \) on \(R[x; \alpha, \delta] \) defined by

\[
\overline{\alpha}(f(x)) = \alpha(a_0) + \alpha(a_1)x + \ldots + \alpha(a_n)x^n
\]
\[
\overline{\delta}(f(x)) = \delta(a_0) + \delta(a_1)x + \ldots + \delta(a_n)x^n
\]

for all \(f(x) = a_0 + a_1x + \ldots + a_nx^n \in R[x; \alpha, \delta] \) and \(\overline{\alpha}(r) = \alpha(r), \overline{\delta}(r) = \delta(r) \) for all \(r \in R \). We shall denote the extended map \(\overline{\alpha} : R[x; \alpha, \delta] \to R[x; \alpha, \delta] \) and \(\overline{\delta} : R[x; \alpha, \delta] \to R[x; \alpha, \delta] \) by \(\delta \), and the image of \(f \in R[x; \alpha, \delta] \) by \(\alpha(f), \delta(f) \), respectively.

Theorem 3.3 Let \(R \) be an \((\alpha, \delta) \)-weakly rigid ring, \(\alpha \) be an automorphism and \(\delta \) an \(\alpha \)-derivation of \(R \) with \(\alpha \delta = \delta \alpha \). Then the following conditions are equivalent:

1. \(R \) is an \((\alpha, \delta) \)-quasi-Baer ring;
2. \(R[x; \alpha, \delta] \) is an \(\alpha \)-quasi-Baer ring;
3. \(R[x; \alpha, \delta] \) is an \((\alpha, \delta) \)-quasi-Baer ring for every extended \(\alpha \)-derivation \(\delta \) of \(R[x; \alpha, \delta] \).

Proof. (1) \(\Rightarrow\) (2) Let \(R \) be an \(\alpha \)-weakly rigid and \((\alpha, \delta) \)-quasi-Baer ring, and \(I \) be any \(\alpha \)-ideal of \(R[x; \alpha, \delta] \). Suppose that \(I_0 \) be an \(\alpha \)-ideal of \(R \) which is a set of all the leading coefficients of polynomials in \(I \) i.e. \(I_0 = \{ a_n \in R \mid f(x) = a_n x^n + \sum_{i=0}^{n-1} a_i x^i \in I \} \). Now first we show that \(I_0 \) is a \((\alpha, \delta) \)-ideal of \(R \). Take any \(g(x) = x \in R[x; \alpha, \delta] \) and...
\[f(x) = \sum_{i=0}^{n} a_i x^i \in I, \]
\[g(x) f(x) = x f(x) = \alpha(a_n) x^{n+1} + \sum_{i=0}^{n-1} \alpha(a_i) x^{i+1} + \delta(a_n) x^n + \sum_{i=0}^{n-1} \delta(a_i) x^i \in I, \]
which gives \(\delta(a_n) \in I_0 \). Therefore \(I_0 \) is an \((\alpha, \delta) \)-ideal of \(R \). Since \(R \) is an \((\alpha, \delta) \)-quasi-Baer ring so \(l_R(I_0) = Re \) for any right semicentral idempotent \(e \in R \) which implies \(eI_0 = 0 \). For \(f(x) = \sum_{i=0}^{n} a_i x^i \in I, \)
\[ef(x) = e \sum_{i=0}^{n} a_i x^i = 0. \]
Thus \(R[x; \alpha, \delta]e \subseteq l_{R[x; \alpha, \delta]}(I) \). Again suppose \(g(x) = \sum_{j=0}^{m} b_j x^j \in l_{R[x; \alpha, \delta]}(I) \) then \(g(x) f(x) = 0 \) which implies \(b_j ra_i = 0 \) since \(R \) is \(\alpha \)-weakly rigid (from the proof of Theorem 2.2). Then \(b_j \in l_R(a_i) = Re, \) so \(b_j = b_je \) and thus \(g = ge \). Therefore \(l_{R[x; \alpha, \delta]}(I) \subseteq R[x; \alpha, \delta]e \). Hence \(R[x; \alpha, \delta] \) is \(\alpha \)-quasi-Baer.

(2) \(\Rightarrow \) (3) It is straightforward.

(3) \(\Rightarrow \) (1) Similar to Theorem 2.2.

Corollary 3.4 ([Theorem 3.4][14]) Let \(R \) be an \(\alpha \)-weakly rigid ring. If \(R \) is a quasi-Baer ring then \(R[x; \alpha, \delta] \) is a quasi-Baer ring.

Corollary 3.5 ([Theorem 3.6][14]) Let \(R \) be an \(\alpha \)-weakly rigid ring. If \(R[x; \alpha, \delta] \) is a quasi-Baer ring then \(R \) is a quasi-Baer ring.

Now we focus on extending the quasi \(\alpha \)-Armendariz property of a skew polynomial rings, as described in section 2, to Ore extension.

Definition 3.6 A ring \(R \) is called a quasi \(\alpha \)-Armendariz ring if whenever \(p = \sum_{i=0}^{m} a_i x^i \) and \(q = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha, \delta] \) satisfy
\[pR[x; \alpha, \delta]q = 0, \]
we have \(a_i R b_j = 0 \) for all \(i \) and \(j \).

Here, we introduce the concept of \((\alpha, \delta) \)-p.q.Baer ring which is a generalization of \(\alpha \)-quasi-Baer, \((\alpha, \delta) \)-quasi-Baer and \(\alpha \)-p.q.Baer by the following definition:

Definition 3.7 A ring \(R \) with an automorphism \(\alpha \) and an \(\alpha \)-derivation \(\delta \) is called an \((\alpha, \delta) \)-p.q.-Baer if the left annihilator of every left principal \((\alpha, \delta) \)-ideal is generated by an idempotent of \(R \).
Theorem 3.8 Let R be an (α, δ)-weakly rigid ring, α be an automorphism and δ an α-derivation of R with $\alpha \delta = \delta \alpha$. Then the following conditions are equivalent:

1. R is an (α, δ)-p.q.-Baer ring;
2. $R[x; \alpha, \delta]$ is an α-p.q.-Baer ring;
3. $R[x; \alpha, \delta]$ is an (α, δ)-p.q.-Baer ring for every extended α-derivation δ of $R[x; \alpha, \delta]$.

Proof. (1) \Rightarrow (2) Let R be an α-weakly rigid (α, δ)-quasi-Baer ring and I be a left principal α-ideal of $R[x; \alpha, \delta]$ which is generated by $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x; \alpha, \delta]$ i.e. $I = \{ f(x)h(x) \mid f(x) \in R[x; \alpha, \delta] \}$. Note that I_0 is a left ideal of R which is generated by h_0, h_1, \ldots, h_n i.e. $I_0 = \{ rh \mid r \in R \}$. Take $g(x) = x^\alpha$, $g(x)rh(x) = x\alpha(h(x)) = \sum_{i=0}^{n} (\alpha(h_i)) x^i + \sum_{i=0}^{n} \delta(h_i) x^i \in I$ and so $\delta(h_i) \in I_0$ for each i. Thus I_0 is an left principal (α, δ)-ideal of R. The proof of the remaining part is similar to Theorem 2.3.

(2) \Rightarrow (3) It is straightforward.

(3) \Rightarrow (1) Similar to Theorem 2.3.

Corollary 3.9 ([Theorem 3.9]14) Let R be an α-weakly rigid ring. If R is a left p.q.-Baer ring then $R[x; \alpha, \delta]$ is a left p.q.-Baer ring.

Corollary 3.10 ([Theorem 3.11]14) Let R be an α-weakly rigid ring. If $R[x; \alpha, \delta]$ is a left p.q.-Baer ring then R is a left p.q.-Baer ring.

Here, we show main results of this section using quasi (α, δ)-Armendariz ring in place of (α, δ)-weakly rigid ring. First, we define quasi (α, δ)-Armendariz ring which is an extension of quasi α-Armendariz ring.

Definition 3.11 A ring R is called a quasi (α, δ)-Armendariz ring if whenever $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x; \alpha, \delta]$ satisfy $pR[x; \alpha, \delta]q = 0$, we have $a_i R b_j = 0$ for all i and j.
Theorem 3.12 Let R be a quasi (α, δ)-Armendariz and (α, δ)-quasi-Baer ring then $R[x; \alpha, \delta]$ is a α-quasi-Baer ring.

Proof. Let R be a quasi (α, δ)-Armendariz and (α, δ)-quasi-Baer ring, and I be any α-ideal of $R[x; \alpha, \delta]$. Suppose that I_0 be an α-ideal of R which is a collection of all the coefficients of elements of I. Now first we show that I_0 is a (α, δ)-ideal of R. Take any $g(x) = x \in R[x; \alpha, \delta]$ and $f(x) = \sum_{i=0}^{n} a_i x^i \in I$.

$$g(x)f(x) = xf(x) = \sum_{i=0}^{n} \alpha(a_i) x^{i+1} + \sum_{i=0}^{n} \delta(a_i) x^i \in I.$$

Thus $\sum_{i=0}^{n} \delta(a_i) x^i \in I$ since I is an α-ideal of $R[x; \alpha, \delta]$ so $\delta(a_i) \in I_0$. Therefore I_0 is an (α, δ)-ideal of R. Since R is an (α, δ)-quasi-Baer ring so $l_R(I_0) = R e$ for any right semicentral idempotent $e \in R$ which implies $eI_0 = 0$. Now to show $l_{R[x; \alpha, \delta]}(I) = R[x; \alpha, \delta]e$. Suppose $f(x) = \sum_{i=0}^{n} a_i x^i \in I$ so $ef = e \sum_{i=0}^{n} a_i x^i = 0$. Thus $R[x; \alpha, \delta]e \subseteq l_{R[x; \alpha, \delta]}(I)$. Again suppose $g(x) = \sum_{j=0}^{m} b_j x^j \in l_{R[x; \alpha, \delta]}(I)$ then $g(x)rf(x) = 0$ which implies $b_j r a_i = 0$ since R is quasi (α, δ)-Armendariz. Then $b_j \in l_R(a_i) = Re$ so $b_j = b_j e$ and thus $g = ge$. Therefore $l_{R[x; \alpha, \delta]}(I) \subseteq R[x; \alpha, \delta]e$. Hence the result follows.

Theorem 3.13 Let R be a quasi (α, δ)-Armendariz and left (α, δ)-p.q.-Baer ring then $R[x; \alpha, \delta]$ is a left α-p.q.-Baer.

Proof. Suppose R is a quasi (α, δ)-Armendariz and left (α, δ)-p.q.-Baer ring, and I be any left α-ideal of $R[x; \alpha, \delta]$ which is generated by $h(x) = \sum_{i=0}^{n} h_i x^i \in R[x; \alpha, \delta]$ i.e. $I = \{ f(x)h(x) \mid f(x) \in R[x; \alpha, \delta] \}$. Let I_0 be the set of all coefficients of elements of I. Then I_0 be a left α-ideal of R which is generated by h_0, h_1, \ldots, h_n. Note that I_0 is a left (α, δ)-ideal of R by Theorem 2.6. Since R is a left (α, δ)-p.q.-Baer ring, $l_R(Rh_i) = Re_i$ where e_i be semicentral idempotents of R which implies
Let \(e = e_0 e_1 \ldots e_n \) which implies \(e \) is also a semicentral idempotent of \(R \). Now consider any \(h(x) = \sum_{i=0}^{n} h_i x^i \in I \) so
\[
e rh(x) = \sum_{i=0}^{n} er(h_i x^i) = \sum_{i=0}^{n} (e_0 e_1 \ldots e_n) r(h_i x^i) = 0,
\]
since \(e_i \) is a semicentral idempotent of \(R \). Therefore \(R[x; \alpha, \delta] e \subseteq l_{R[x; \alpha, \delta]}(R[x; \alpha, \delta]h(x)) \). Again suppose \(g(x) = \sum_{j=0}^{m} b_j x^j \in l_{R[x; \alpha, \delta]}(R[x; \alpha, \delta]h(x)) \). Then \(g(x)R[x; \alpha, \delta]h(x) = 0 \) which implies that \(g(x)Rh(x) = 0 \).
It follows that \(b_j \in l_{R}(Rh_j) = Re \) which gives \(b_j = b_j e_0 e_1 \ldots e_n \) and therefore \(g = ge \) implies \(l_{R[x; \alpha, \delta]}(R[x; \alpha, \delta]h(x)) \subseteq R[x; \alpha, \delta] e \). Hence the result follows.

Skeew power series over \(\alpha \)-quasi-Baer ring

In this section we consider the relationship between the properties of being \(\alpha \)-quasi-Baer of a ring \(R \) and of the skew power series ring \(R[[x; \alpha]] \). Further we introduce the concept of quasi \(\alpha \)-Armendariz of power series type which is an extension of quasi \(\alpha \)-Armendariz ring and also an extension of skew \(\alpha \)-Armendariz property of a ring \(R \) defined in [15].

Theorem 4.1 Let \(R \) be an \(\alpha \)-weakly rigid ring. Then the following conditions are equivalent:
1. \(R \) is an \(\alpha \)-quasi-Baer ring;
2. \(R[[x; \alpha]] \) is a quasi-Baer ring;
3. \(R[[x; \alpha]] \) is a \(\alpha \)-quasi-Baer ring for every extended \(\alpha \)-automorphism of \(R[[x; \alpha]] \).

Proof. (1) \(\Rightarrow \) (2) Suppose \(R \) is \(\alpha \)-quasi-Baer and \(I \) be an arbitrary ideal of \(R[[x; \alpha]] \). Let \(I_0 \) be the set of leading coefficients of elements in \(I \) i.e. \(I_0 = \{ a_n \in R \mid \text{there exists } a_n x^n + \sum_{i=n+1}^{\infty} a_i x^i \in I, \text{ for some non-negative integer } n \text{ and } a_i \in R \} \). Then \(I_0 \) is an ideal of \(R \). Note that \(I_0 \) is an \(\alpha \)-ideal of \(R \) since for \(f(x) = a_n x^n + \sum_{i=n+1}^{\infty} a_i x^i \in I \) and \(g(x) = x \in R \), we have \(g(x)f(x) = \alpha(a_n) x^n \sum_{i=n+1}^{\infty} \alpha(a_i) x^i \in I \) and so \(\alpha(a_i) \in I_0 \) for each \(i \).
Thus \(I_0 \) is an \(\alpha \)-ideal of \(R \), which gives \(l_{R}(I_0) = Re \) for some idempotent
\[e \in R. \text{ For any } f(x) = \sum_{i=0}^{\infty} a_i x^i \in I \text{ we have } a_n \in I_0, \text{ so } ea_n = 0. \]

Therefore \[ef(x) = e(\sum_{i=0}^{\infty} a_i x^i) = ea_n x + e(\sum_{i=n+1}^{\infty} a_i x^i). \]

Since \(ea_n \in I_0 \), we get \(ea_n = eea_n = 0 \). Continuing in this way we get \(ef(x) = 0 \) and so \(R[[x; \alpha]]e \subseteq l_{R[[x; \alpha]]}(I) \). Proof of remaining part of this Theorem is similar to Theorem 2.2 Hence \(R[[x; \alpha]] \) is quasi-Baer.

(2) \(\Rightarrow \) (3) It is clear.

(3) \(\Rightarrow \) (1) Similar to Theorem 2.2.

Corollary 4.2 ([Theorem 3.28][14]) Let \(R \) be an \(\alpha \)-weakly rigid ring. If \(R \) is a quasi-Baer ring then \(R[[x; \alpha]] \) is a quasi-Baer ring.

Motivated by Pourtaherian and Rakhimov [15], we define quasi \(\alpha \)-Armendariz ring of power series type as follows:

Definition 4.3 Let \(R \) be a ring and \(\alpha \) be an endomorphism of \(R \).

Then \(R \) is called a quasi \(\alpha \)-Armendariz ring of power series type if for \(p = \sum_{i=0}^{\infty} a_i x^i, q = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \alpha]] \), \(pR[[x; \alpha]]q = 0 \) implies \(a_i R b_j = 0 \) for all \(i \) and \(j \).

Theorem 4.4 Let \(R \) be a quasi \(\alpha \)-Armendariz of power series type. If \(R \) is \(\alpha \)-quasi-Baer ring then \(R[[x; \alpha]] \) is a quasi-Baer ring.

Proof. Let \(R \) be a quasi \(\alpha \)-Armendariz of power series type and \(\alpha \)-quasi-Baer ring, and let \(I \) be any arbitrary ideal of \(R[[x; \alpha]] \). Consider \(I_0 \) be the set of all the coefficients of elements of \(I \). Observe that \(I_0 \) is an \(\alpha \)-ideal of \(R \) since for \(f(x) = \sum_{i=0}^{\infty} a_i x^i \in I \) and \(g(x) = x \in R \), we have \(g(x)f(x) = \sum_{i=0}^{\infty} \alpha(a_i)x^{i+1} \in I \) and so \(\alpha(a_i) \in I_0 \) for each \(i \). Thus \(I_0 \) is an \(\alpha \)-ideal of \(R \), which gives \(l_R(I_0) = Re \) for some right semicentral idempotent \(e \in R \) i.e. \(ea_n = 0 \) for any \(a_n \in I_0 \). Now we show that \(l_{R[[x; \alpha]]}(I) = R[[x; \alpha]]e \). Suppose \(f(x) = \sum_{i=0}^{\infty} a_i x^i \in I \), so \(ef(x) = \sum_{i=0}^{\infty} (ea_i)x^i = 0 \) so \(R[[x; \alpha]]e \subseteq l_{R[[x; \alpha]]}(I) \). Again suppose \(g(x) = \sum_{j=0}^{\infty} b_j x^j \in l_{R[[x; \alpha]]}(I) \) which implies \(g(x)rf(x) = 0 \), it follows...
that \(b_j r a_j = 0 \) since \(R \) is quasi \(\alpha \)-Armendariz of power series type. Then
\[b_j \in l_R(a_j) = Re \] which gives \(b_j = b e \). Thus \(g = ge \) and therefore
\[l_R[[x;\alpha]](I) \subseteq R[[x;\alpha]]e \]. Hence the result follows.

† M.R Khan, Ph.D., Jamia Millia Islamia, New Delhi, India.
‡ Prachi Juyal, Ph.D., Jamia Millia Islamia, New Delhi, India.

References

