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Abstract 
 
          The APOS/ACE instructional treatment for learning and teaching 
mathematics was developed during the 1990’s by a team of mathematicians and 
mathematics educators led by Ed Dubinsky. In the present article we design in 
terms of the APOS/ACE treatment a general plan for teaching the real numbers 
at an elementary level (high school and college introductory mathematical 
courses). Our didactic approach is based on multiple representations of real 
numbers and on flexible transformations among them.  Two classroom 
experiments performed during the last two academic years with students of my 
institution  
(T. E. I. of Patras, Greece) are also reported illustrating the effectiveness of our 
teaching design in practice. 

Introduction 
         
          Research focussed on the comprehension of irrational numbers shows 
that, apart from the earlier incomplete comprehension of rational numbers, they 
are also other obstacles (cognitive and epistemological) making it even more 
difficult (Herscovics 1989, Sierpinska 1994, Sirotic & Zazkis 2007a, etc).  
          Fischbein et al. (1995) assumed that possible obstacles for the 
comprehension of irrational numbers could be the intuitive difficulties that 
revealed themselves in the history of mathematics, i.e. the existence of 
incommensurable magnitudes and the fact that the power of continuum of the set 
R of real numbers is higher than the power of Q, which, although being an 
everywhere dense set, can not cover all points of a given interval. Their basic 
conclusion resulting from their experiments with school students and pre-service 
teachers was that, since school mathematics is generally not concerned with the 
systematic teaching of the hierarchical structure of the various classes of 
numbers, most of high school students and many pre-service teachers were not 
able to define correctly the concepts of rational, irrational and real numbers, 
neither to identify various examples of numbers. They also found that, contrary 
to their initial assumption, the concept of irrational numbers does not encounter 
in general a particular intuitive difficulty in students’ mind. Hence they assumed 
that such difficulties are not primitive ones and they express a relatively high 
level of mathematical education. However they suggest that for a better 
understanding of irrational numbers the teacher should turn students’ attention 
on these difficulties rather, than ignore them. 
          Peled & Hershkovitz (1999) performing an experimental research 
observed that pre-service mathematics teachers being at their second and third 
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year of studies, although they knew the definitions and basic characteristics of 
the irrational numbers, they failed in tasks that required a flexible use of their 
different representations.  
          Sirotic & Zazkis (2007b) focusing on the ability of prospective secondary 
teachers in representing irrational numbers as points on a number line observed 
confusion between irrational numbers and their decimal approximation and 
overwhelming reliance on the latter. They also used (Zazkis & Sirotic 2010) the 
distinction between transparent and opaque representations of concepts (Lesh et 
al. 1987) as a theoretical perspective in studying the ways in which different 
decimal representations of real numbers influenced their responses with respect 
to their possible irrationality. 
          Voskoglou & Kosyvas  (2011, 2012) report on a study of high-school and 
of technologist students (prospective engineers and economists) understanding 
of real numbers. The study was based on written response to a properly designed 
questionnaire and on interviews taken from students. The superiority of the 
technologist students’ correct answers with respect to those of high-school 
students was evident in most cases. This is a strong indication that the age and 
the width of mathematical knowledge play an important role for the better 
understanding of the real numbers. The results obtained suggest also that the 
ability to transfer in comfort among several representations of real numbers 
helps students in obtaining a better understanding of them.  
          The purpose of this paper is to apply the APOS/ACE framework for 
learning and teaching mathematics, developed by a team of mathematicians and 
mathematics educators led by Ed Dubinsky (Asiala et. al. 1996), in providing 
plausible explanations of the students’ difficulties in understanding the irrational 
numbers and a general plan for teaching them at school. The paper is organized 
as follows: In the second section we present the general lines of the APOS/ACE 
approach and in the third section we describe the APOS analysis for the concept 
of infinity, which is strictly connected with the better understanding of the 
irrational numbers. In the fourth section we design a general plan for teaching 
the irrational numbers through a theoretical analysis of the concepts involved in 
terms of the mental constructions a learner might take in order to develop 
understanding of the concepts. In the fifth section we present a classroom 
experiment by applying the constructed general plan in terms of the ACE style 
in teaching the irrational numbers to an experimental group of students and by 
comparing the results of this group with those of another group of students 
taught the same subject in the traditional way (control group). Finally, the sixth 
and last section of the paper contains the conclusions of our study and relevant 
discussion.        
 

Description of the APOS/ACE instructional treatment 
 
          Dubinsky had already spent twenty- five years doing research in 
functional analysis and teaching undergraduate mathematics before starting his 
new career on figuring out pedagogical strategies that help students to be more 
successful in learning mathematics. APOS is a theory based on Piaget’s 
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principle that an individual learns (e.g. mathematics) by applying certain mental 
mechanisms to build specific mental structures and uses these structures to deal 
with problems connected to the corresponding situations (Piaget 1970). Thus, 
according to APOS theory, an individual deals with a mathematical situation by 
using certain mental mechanisms to build cognitive structures that are applied to 
the situation. The main mechanisms are called interiorization and encapsulation 
and the related structures are actions, processes, objects and schemas. The last 
four words constitute the acronym APOS.   
          The theory postulates that a mathematical concept begins to be formed as 
one applies transformations on certain entities to obtain other entities.  A 
transformation is first conceived as an action. For example, if an individual can 
think of a function only through an explicit expression and can do little more 
than substitute for the variable in the expression and manipulate it, he (she) is 
considered to have an action understanding on functions. 
          As an individual repeats and reflects an action it may be interiorized to a 
mental process. A process performs the same operation as the action, but wholly 
in the mind of the individual enabling her/him to imagine performing the 
transformation without having to execute each step explicitly. For example, an 
individual with a process understanding of a function thinks about it in terms of 
inputs, possibly unspecified, and transformations of those inputs to produce 
outputs.   
          If one becomes aware of a mental process as a totality and can construct 
transformations acting on this totality, then we say that the individual has 
encapsulated the process into a cognitive object. In case of functions 
encapsulation allows one to form sets of functions, to define operations on such 
sets, to equip them with a topology, etc. Although a process is transformed into 
an object by encapsulation, this is often neither easy not immediate. This 
happens because encapsulation entails a radical sift in the nature of one’s 
conceptualization, since it signifies the ability to think of the same concept as a 
mathematical entity to which new, higher-level transformations can be applied.  
On the other hand, the mental process that led to a mental object through 
encapsulation remains still available and many mathematical situations require 
one to de-encapsulate an object back to the process that led to it. This cycle may 
be repeated one or more times (e.g. going back from a composite function to its 
component functions for the better understanding of the rule of derivation of a 
composite function, going back from the derivative to the initial function in 
order to understand the process of the integration of a function, etc).  
          A mathematical topic often involves many actions, processes and objects 
that need to be organized into a coherent framework that enables the individual 
to decide which mental processes to use in dealing with a mathematical 
situation. Such a framework is called a schema. In the case of functions it is the 
schema structure that is used to see a function in a given mathematical or real-
world situation. 
          The implementation of APOS theory as a framework for the learning and 
teaching of mathematics involves three stages. Firstly a theoretical analysis, 
called a genetic decomposition (GD) of the concepts under study, is performed. 
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The GD comprises a description that includes actions, processes and objects and 
the order in which it may be best for learners to experience them. Then 
instructional sequences based on the GD are developed and implemented and 
finally data is collected and analysed in order to test and refine the GD and the 
pedagogical strategies employed (Dubinsky & McDonald 2001). 
          The main contribution obtained from an APOS analysis is an increased 
understanding of an important aspect of human thought. However, explanations 
offered by such analyses are limited to descriptions of the thinking that an 
individual may be capable of and not of what really happens in an individual’s 
mind, since this is probably unknowable. Moreover, the fact that one possesses a 
certain mental structure does not mean that he/she will necessary apply it in a 
given situation. This depends on other factors regarding managerial strategies, 
prompts, emotional state, etc.           
          The APOS theory has important consequences for education. Simply put, 
it says that the teaching of mathematics should consist in helping students use 
the mental structures they already have to develop an understanding of as much 
mathematics as those available structures can handle. For students to move 
further, teaching should help them to build new, more powerful structures for 
handling more and more advanced mathematics. Dubinsky and his collaborators 
realized that for each mental construction that comes out of an APOS analysis, 
one can find a computer task of writing a program or code, such that, if a student 
engages in that task, he (she) is fairly likely to build the mental construction that 
leads to learning the mathematics. In other words, performing the task is an 
experience that leads to one or more mental constructions. As a consequence of 
the above finding, the pedagogical approach based on APOS analysis, known as 
the ACE teaching cycle, is a repeated cycle of three components: (A) activities 
on the computer, (C) classroom discussion and (E) exercises done outside the 
class.   
          In applying the ACE cycle the mathematical topic under consideration is 
divided to smaller subtopics and each iteration of the cycle corresponds to one 
of the above subtopics. The computer activities, which form the first step of the 
ACE approach, are deigned to foster the students’ development of the 
appropriate mental structures. The students do all of their work in cooperative 
groups. In the classroom the teacher guides the students to reflect on the 
computer activities and their relation to the mathematical concepts being 
studied. They do this by performing mathematical skills without using the 
computer.  They discuss their results and listen to explanations by fellow 
students, or the teacher, of the mathematical meanings of what they are working 
on. The homework exercises are fairly standard problems related to the topic 
being studied. Students reinforce the knowledge obtained in the computer 
activities and classroom discussions by applying it in solving these problems. 
          The implementation of the ACE cycle and its effectiveness in helping 
students make mental constructions and learn mathematics has been reported in 
several research studies of the Dubinsky’s team. A summary of earlier work can 
be found in Weller et al. (2003). More recently this approach was applied in 
studying the pre-service teachers understanding of the relation between a 
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fraction or integer and its decimal expansion (Weller, Arnon & Dubinsky 2009, 
2011). 
                 

The APOS analysis for the concept of infinity 
 

          The concept of infinity is strictly connected with the better understanding 
of the irrational numbers. In fact, it is well known that each irrational number is 
the limit of the sequence of its successive finite decimal approximations. 
Further, the concept of infinity is involved in understanding that the power of 
continuum of the set of real numbers is higher than the power of the set of 
rational numbers and in several other cases. Therefore, one wanting to apply the 
APOS/ACE framework for teaching the irrational numbers, he (she) must study 
first the APOS analysis for the concept of infinity.   
          Aristotle’s (384-322 B.C.) potential/actual dichotomy dominated 
conceptions of the infinity for centuries. He defined the actual infinity to be the 
infinite present of a moment in time and he considered it to be incomprehensible 
because the underlying process of such an actuality would require the whole of 
time. He argued that infinite could only be understood as being presented over 
the time, that is, as being a potential infinity. Despite past and current favour 
toward Aristotle’s views, there were some dissenters, such as the rationalists. 
Bolzano (1741-1848) played a major role in advancing the notion of an infinite 
totality when he rejected Aristotle’s assertion that a collection does not exist as a 
completed whole unless one forms an image of every item, or reflects on every 
step of the process that generates it. In his view we can use our minds to 
conceive of an infinite collection by describing its elements without having to 
think of each element individually. His main argument supporting the above 
view is that, if we consider Aristotle’s assertion to be true, then we must deny 
the existence of large finite numbers, like the grains of sand in a desert, etc. For 
a detailed account of historical and philosophical issues of infinity see Moore 
(1999). 
          Dubinsky et al. (2005 a, b) expanded the APOS theory to explain how 
people may think about the concept of infinity and to analyze many of the 
difficulties appearing in understanding this concept. Their analysis suggests that 
potential infinity is the conception of the infinite as a process, while actual 
infinity is the mental object obtained through the encapsulation of that process to 
an object. Hence the existence of the one does not negate the other, nor is a 
misconception with respect to the other. Instead they represent two different 
cognitive conceptions that are related to the mental mechanism of encapsulation.  
These conceptions and their relationship become part of the individual’s infinity 
schema. In this sense we might argue that Bolzano’s thinking is evidence in 
support of APOS analysis.               
          In the case of an infinite process the mental object transcends the process 
(e.g. limit of a sequence) in the sense that it is not associated with nor is 
produced by any step of the process (transcendental object). This is the 
cognitive difference between large finite numbers, where the last number 
enumerated indicates its completion (final object) and the infinite and explains 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 8 No. 1      35 

why the former can be easier understood. The delay often seen in the 
development of encapsulation may explain why it took centuries for the actual 
infinity to be widely accepted, and why many still find the dichotomy between 
potential and actual infinity to be perplexing. 
         In concluding, we may say that through encapsulation the infinite becomes 
cognitively attainable. On the other hand cognitively unattainable is the instance 
of the infinite in the form of a process that has not been encapsulated. This may 
happen because the process has not yet seen as a totality, either because it 
cannot be seen as a totality, or because no encapsulation has taken place. Thus, 
for the cognitive point of view it must be understood that for the case of infinity 
the ability to see something as a totality and the mechanism of encapsulation 
may not always been available (as in the set of all sets and other unmanageable 
sets). This resolves various paradoxes that appear in the concept of infinity. 
 

A general plan for teaching the irrational numbers based on the 
APOS/ACE approach 

 
         In our introduction we referred to the difficulties appearing to learners in 
comprehending the irrational numbers. In this section and in designing a GD for 
irrational numbers we shall attempt to give a theoretical explanation about them 
in terms of the APOS theory. Further, we shall propose possible ways to 
overcome these difficulties.    
          An essential pre-assumption for the comprehension of   irrational numbers 
is that students have already consolidated their knowledge about rational 
numbers and, if this has not been achieved, as it usually happens, many 
problems are created. It has been observed that pupils, but also university 
students at all levels, are not able to define correctly the concepts of rational and 
irrational numbers, neither are in position to distinguish between integers and 
these numbers (Hart 1988, Fischbein et al. 1995). It seems that the concept of 
rational numbers in general remains isolated from the wider class of real 
numbers (Moseley 2005, Toepliz 2007). But why all these happen? Let us start 
from the notion of a fraction. If someone can think of a fraction, for example

3
2 , 

only by dividing a specific object (e. g a chocolate) in 3 equal pieces and pick 2 
of them, then he/she has an action conception of fractions. Most students as a 
result of the normal human activity are able, after repeating such an action and 
reflecting on it, to build a process conception of fractions that allows them to 
imagine dividing an unspecified object in 3 parts an taking 2 of them. However 
the encapsulation of this process to a mental object does not seem to be so easy. 
This explains why many students consider the multiple ways of writing down a 
fraction as being different fractions, or why they consider fractions and decimals 
as being different kinds of numbers. The latter explains also why they are not in 
position to distinguish between integers and decimals.  
          On the other hand the frequent identification by students of real numbers 
with their given finite approximations (e.g. identification of � with 3,14 or with 
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22
7

, of 
144
233

 with 0,180257, when performing the division 144:233 with a 

calculator, etc) means that these students have an action understanding of the 
notion of real number that has not been interiorized yet to a mental process, i.e. 
to potential infinity. 
          We can see reflections on the development of the concept of actual 
infinity in students of today. Nunez (1993) reporting on a study of the 
construction of infinite processes by children aged 9-14 notes that none of his 
subjects shoed any signs of thinking about an actual infinity: all their comments 
were in terms of potential infinity. He suggests that the reason is that the concept 
of actual infinity does not arise before the age of 15. His view is supported by 
results of Haucart and Rouche (1987) who found that some students aged 12-18 
did seem to have a concept of actual infinity. These authors discuss the relation 
between potential and actual infinity in terms of the movement from an infinite 
process to its limit. All the above lead to the conclusion that, since the notion of 
an infinite decimal is obtained as the transcendental object of an infinite process 
(limit of a sequence of finite decimals) the encapsulation of this process is not 
easy. This gives an explanation of students’ difficulties in defining correctly the 
rational and irrational numbers. 
          However, the encapsulation of the concept of  real numbers is getting 
more perplexed due to the fact that many rational numbers, like  
144
233

= 0,61802575107… , which possesses a period of 232 digits, and most of 

irrational numbers have opaque, decimal representations (Lesh, Behr, and Post 
1987, Zazkis and Sirotic 2010). This makes the recognition of their possible 
rationality or not to be impossible when only their decimal representations are 
given. But, for students it is difficult in general to understand a number, if they 
don’t know an explicit way of writing it down. In fact, it seems that people tend 
to adapt their formal knowledge to accommodate their beliefs (i.e. the 
conclusions of their intuitive knowledge), perhaps as a natural tendency towards 
consistency. Therefore, when their beliefs are not clear and/or accurate, as it 
happens with opaque representations of real numbers, it is very possible to lead 
to mistakes and/or inconsistencies.  
          Concerning the difficulties in accepting the existence of incommensurable 
magnitudes and in understanding that the power of continuum of R is higher 
than the power of Q they could be considered as typical cases of cognitively 
unattainable infinity, where the infinite process involved is not yet seen as a 
completed totality and therefore it has not been encapsulated.  
          The problems are increasing when dealing with the existence of 
transcendental numbers. In fact, students already know that the periodic 
decimals can be alternatively written as fractions. Later they learn that the 
square roots of non quadratic fractions are irrational numbers and that the same 
happens with the roots of rational numbers of any order whose value is not a 
finite decimal. Therefore it is difficult afterwards to accept the existence of 
irrational numbers that cannot be traced algebraically.  In other words this is 
another case of a mental process that cannot be seen easily by students as a 
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completed totality and therefore to be encapsulated to a mental object (of 
irrational numbers). Finally, the students’ difficulty in dealing with comfort with 
the multiple representations of real numbers is a consequence of the inadequate 
organization by them of a powerful schema for real numbers. 
         Reflecting on the above explanations of students’ difficulties in 
understanding the real numbers we designed a general plan for teaching the 
irrational numbers consisting of three iterations of the ACE cycle. Each cycle 
consisted of two class days, one for computer activities and one for classroom 
discussions. Homework exercises were assigned and collected. Notice that, since 
the proper understanding of the rational numbers is an essential pre-assumption 
for the comprehension of the irrational numbers, our design involved frequent 
repetitions of the corresponding situations for rational numbers. Some of these 
repetitions were adapted from Weller et al. (2009). 
          In an action level the concept of an infinite decimal (rational or irrational 
number) is understood by considering its finite decimal approximations.  The 
target of the first iteration of the ACE cycle was to facilitate the interiorization 
of this action to a process. The students completed in the computers’ laboratory 
activities with a preloaded decimal expansion package. They developed general 
descriptions of what was stored and answered various questions about an infinite 
digit string such as: What is a repeating decimal? Which of the strings are 
repeating decimals? What are the digits in the first 20 places after the decimal 
point and what would appear in the 1005th place? Further, students were asked 
from to calculate the successive finite decimal approximations of several square 
roots with gradually increasing accuracy.  
          In the classroom discussion the students reported their group responses 
and the class negotiated agreements. A notational system for infinite decimals 
was devised. For example, since 1< 2 <2, 1,4< 2 <1,5, 1,41< 2 <1,42, 
1,414< 2 <1,415,  1,4142< 2 <1,4143,  1,41421< 2 <1,41422, etc, 2  can 
be written as  2 = 1,4142….. . The dots at the end indicate that the sequence of 
the decimal digits is continued to infinity. Therefore, by accepting this symbolic 
representation of an infinite decimal we can not see written all its decimal digits. 
We can only see the digits of its given decimal approximation each time. The 
instructor recalled at this point that a repeating decimal (rational number) can be 
written in the form a,b c . Here a, b, c are natural numbers, where a denotes the 
integer part of the rational number, b is its decimal portion that possibly appears 
before the repeating cycle (in case of mixed periodic numbers) and c is the 
repeating cycle (period) of the number. A finite decimal can be written as a 
repeating decimal with period 0 or 9; e.g. 2,5 = 2,5 0  = 2,4 9  The exercises 
included problems where certain information about an infinite digit string was 
provided that was sufficient to specify the string. 
          The target of the second iteration of the ACE cycle was to facilitate the 
encapsulation of the concept of a real number to a mental object. During the 
computer activities students were asked to work out examples with transparent 
and opaque decimal representations of real numbers like the following:  The 
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rational numbers 
3
5

=0,6 , 
1
3

= 0,33..., 281849
99900

=2,82113113113… , have 

transparent decimal representations, since we can foresee their decimal digits in 
all places; but the same is not happening with 

1861
1 = 0,0005373…, which, 

possessing a period of 1860 digits, has an  opaque decimal representation. 
Notice that decimal representations of certain irrational numbers, despites to 
their complex structure in general, are also transparent. For example, this 
happens with the numbers 2,001313113111311113111113… where 1, following 
13, is repeated one more time  at each time, and 
0,282288222888222288882…where 2 and 8, following 28, are repeated one 
more time at each time. Taking this opportunity the instructor clarified to the 
class that an infinite decimal is an incommensurable (non periodic) decimal not 
because its decimal digits are not repeated in a concrete process (this in fact can 
happen according to the above two examples), but because it has not a period, 
i.e. its decimal digits are not repeated in the same concrete series. Some standard 
cases of decimal expansions of transcendental numbers like π  and e were also 
added to the above examples. Students were also asked to convert fractions and 
roots of second or higher order to decimals and vice versa. Further, the computer 
activities included  arithmetic operations among irrational and rational numbers 
by using their finite decimal approximations.  
          In the classroom the students performed the same mathematical skills 
without using the computers. In this way they realized that in converting a 
fraction to a decimal, if the quotient obtained is an infinite decimal having a 
long period, a long and laborious division is reached in general, which is not 
possible to be determined soon. At this point the instructor emphasized that 

given a fraction 
µ
ν , , ,  0µ ν ν∈Ζ ≠ , the quotient of  the division � : �  is always  a 

periodic decimal. The probability to be a finite decimal is small enough, since a 
fraction, whose denominator is not a product of powers of 2 and/or 5, cannot be 
written as a finite decimal. In case of an infinite decimal, since the remainder of 
the division � : � is smaller that �, performing the division and after a finite 
number  of steps (at most �-1) the same remainder will reappear at some step. 
This means that the resulting decimal is a periodic one, having a period of at 
most �-1 digits. Conversely, a standard method for converting periodic numbers 
to fractions (although they could be used other methods as well) is by 
subtracting both members of proper equations containing multiples of a power 
of 10 of the given number. For example, given x=2,75323232…, we write 
10000x=27532,3232… and 100x=275,3232….,  wherefrom we get that 

9900x=27532-275,  or x=
27257
9900 .  Reflecting on the above examples the students 

reached to the conclusion that periodic decimals and fractions are the same 
numbers written in a different way. Students’ contact at school with the 
definition of irrational numbers as incommensurable decimals is usually rather 
slim, while emphasis is given in defining them as non rational numbers (i.e. 
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they cannot be written as fractions 
µ
ν  , with �, � integers and  0ν ≠ ). However, 

students must clearly understand the equivalence between the above two 
definitions: Since rational numbers and periodic decimals are the same numbers 
written in a different way, the same thing holds for non rational numbers and 
incommensurable decimals. Thus, the set of real numbers R can be defined as 
the set of all commensurable and incommensurable decimals and their 
opposites. In closing the classroom discussion the instructor presented 
empirically the concept of a sequence of finite decimals and of its limit (i.e. 
what it means to “tend” to a number) and explained it to students by using the 
appropriate examples, like this with 2 mentioned above. In no case it becomes 
necessary for the teacher to give the analytic definition of the limit of a 
sequence. The above empiric approach is enough in helping students to 
encapsulate the concept of a real number to a mental object.  The homework 
exercises were standard problems related to the topics mentioned above aiming 
to consolidate the students’ knowledge and understanding of these topics.   
         The target of the third iteration of the ACE cycle was to help students to 
enlist the real numbers in general and the irrational numbers in particular in their 
cognitive schema related to the already known basic sets of numbers (natural 
numbers, integers and rational numbers). A prerequisite for this is that they must 
be able to transfer in comfort among the several representations of real numbers. 
Therefore, the computer activities in this cycle involved among the others 
examples of constructions of line segments with incommensurable lengths; 
either classical geometrical constructions by using the Pythagorean  theorem, 
like 2, 3  etc, or cases where the construction of the graph of a function is 

necessary, like 3 2  
with the function 3( )f x x=  (or 3( ) 2f x x= − ) etc. They 

involved also examples of writing real numbers in the form of a series 
0 10

n
n

n

x
κ∞

=

=�  
 , 

where �0 is an integer and �1, �2,…., �n,…. are natural numbers less than 10*. 
Finally, the computer activities involved also examples of interpolation 
of rational and irrational numbers between two given integers, or between two 
rational (irrational) numbers aiming to promote the later discussion in classroom 
about the density of the sets of rational and real numbers. 
          In the classroom discussion the instructor recalled first that in defining the 
set Q of rational numbers as the set of all fractions and in order to count each 
fraction only once, we considered only the fractions of the form  µ

ν
± , where � 

_____________________________________________ 
 
*If in the above series we have �1=�2=…..=��=------=9, it is easy to check that x= �0+1.  Therefore, 
if we denote by [x] the integral part of x, we have that [x] = � 0 and at the same time that [x] =� 0+1, 
which is absurd! Therefore there is a debate in the literature whether or not decimal expansions of 
the form �0, 9  are representing real numbers; e.g. see Voskoglou 2012. Fortunately the results 
obtained when using these representations are conventionally correct because the corresponding 
operations could be performed in an analogous way among the sequences of the partial sums of the 
corresponding series. This allows us at school level to pass through this sensitive matter without 
touching it at all.  
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and � are non negative integers ( 0ν ≠ ), with greatest common divisor equal to 
1.  In an analogous way, since for all integers � and � with 1 ≤  � ≤  9 we have 
�,� = �,(�-1) 9   and , 9κ = �+1, in defining R as the set of all decimals and in 
order to count each real number only once , we must exclude all infinite decimal 
expansions of the form  �,�1�2…….. , in which there exists a natural number � 
such that ��=9 for all � ≥ �. The instructor presented also to students some 
details about the transcendental numbers. This new kind of numbers usually 
activates students’ imagination and increases their interest by creating a 
pedagogical atmosphere of mystery and surprise. It can be shown that the set of 
algebraic numbers is a denumerable set, while Cantor proved that the set of 
transcendental numbers has the power of continuum. This practically means that 
transcendental are much more than algebraic numbers, but the information that 
we have about them is very small related to their multitude. That is why one can 
characterize them as a “black hole” (in analogy with the astronomical meaning 
of term) in the “universe” of real numbers (Voskoglou 2011). 
          Activities on geometric constructions of irrational numbers were also 
organized in classroom combining history of mathematics with Euclidean 
Geometry. Within the culture of ancient Greek mathematics the geometric figure 
was the basis for unfolding mathematical thought, since it helped in obtaining 
conjectures, fertile mathematical ideas and justifications (proofs). In fact, 
convincing arguments are built by drawing auxiliary lines, optical reformations 
and new modified figures, and therefore mathematical thinking becomes more 
completed in this way. Therefore the geometric representations of real numbers 
enrich their teaching, connecting it historically with the discovery of 
incommensurable magnitudes and the relevant theory of Eudoxus. Following 
these historical steps of the human thought is probably the best way in helping 
students to accept the existence of incommensurable magnitudes. Another 
crucial matter for the instructor is to find the proper way to explain to students 
the continuum of R with respect to the density of Q.  In other words to persuade 
them that in a given interval of numbers it is possible to have an infinite number 
of elements of a certain type (rational numbers) and at the same time to be able 
to add an infinity of elements of another type (irrational numbers), when this is 
not compatible with the usual logic and intuition.  It seems that the use of the 
geometric representations of real numbers is the best way to deal with this 
problem (an interval of points on the real axis cannot be “filled” with rational 
points only). The difficulty in this case is that most of the irrational numbers, 
like 3 2 , �, e, etc, correspond to lengths of line segments that cannot be 

constructed geometrically. Therefore, we correspond to all these numbers points 
of the real axis in an approximate way by using their finite decimal 
approximations and our fantasy1.  

                                                           
1  Mathematically speaking the above correspondence is based on the principle of the nested 
intervals connected to the method of Dedekind cuts for defining the real numbers (e.g. see 
Voskoglou & Kosyvas 2011; section 2), an approach not compatible with an  elementary 
presentation of real numbers to students. Nevertheless, in my country (Greece) during the period of 
bloom of “modern mathematics” in school education (1970-1990) the presentation of R as an 
ordered field was attempted at the upper high school level (Lyceum), where the principle of nested 
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          In concluding, our general didactic approach included: A fertile utilization 
of already existing informal knowledge and beliefs about numbers, active 
learning through rediscovery of concepts and conclusions, construction of 
knowledge by students individually or as a team in the computers’ laboratory 
and in classroom. Construction of knowledge followed in general student’s 
optical corner, while teacher’s role was limited to the discussion in the whole 
class of wrong arguments and misinterpretations observed. The teaching process 
was based on multiple representations of real numbers (rational numbers written 
as fractions and periodic decimals, irrational numbers considered as non rational 
ones and as incommensurable decimals which are limits of sequences of rational 
numbers, geometric representations, etc) and on flexible transformations among 
them. It was hoped that this approach could help students in building a powerful 
schema for real numbers. 
           

A classroom experiment 
 

          In developing and applying in practice our ACE design for teaching the 
irrational numbers we performed during the academic year 2011-12 a classroom 
experiment with two groups of students of the Graduate Technological 
Educational Institute (T. E. I.) of Patras, Greece being at their first term of 
studies. The subjects of the experimental group were 90 students of the School 
of Technological Applications (prospective engineers) attending the course 
“Higher Mathematics I” 2. The students of this group were taught the irrational 
numbers in the computers’ laboratory and in the classroom according to our 
ACE design presented above. The subjects of the control group were 100 
students of the School of Management and Economics attending a similar 
mathematical course (the instructor was the same person). In this group the 
lectures were performed in the classical way on the board, followed by a number 
of exercises and examples. The students participated in solving these exercises.  
          On the first day in class the students of both groups completed 
individually a five-item pre-instructional written questionnaire (see Appendix I). 
The instrument served to establish the similarity of the two groups and to guide 
the development of the teaching process.  The students of the two groups 
responded similarly to the questionnaire items. At the end of the instructional 
unit students of both groups completed a new ten-item post-instructional written 
questionnaire (see Appendix II). Students were instructed to work on the 

                                                                                                                                  
intervals, presented as a fundamental axiom, was used in defining real numbers.  It was proved 
impossible however to persuade students in this way that each sequence of nested intervals leads to 
the construction of a unique real number. This strict axiomatic approach, isolated from Dedekind’s 
cuts (at any case such a connection could not be presented at school level) didn’t offer any more to 
the better understanding of the real numbers, than their decimal representations do. On the contrary, 
it caused a great confusion to students. 
 
 
2 The course involves an introductory chapter repeating and extending the students’ knowledge from 
secondary education about the basic sets of numbers, Complex Numbers, Differential and Integral 
Calculus in one variable, Elementary Differential Equations and Linear Algebra. 
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questionnaire individually and to answer each question thoroughly. The 
instrument counted as a progress grade added to the course’s final exam results.  
In assessing the general performance of the two groups we applied the widely 
known GPA method 3. Now the performance of the first (experimental group) 
was found to be significantly better (GPA1 �  3,19 and GPA2 = 2,64). An 

analogous experiment was repeated during the current academic year 2012-13. 
This time, although the students of the control group responded slightly better to 
the pre-instructional questionnaire, the superiority of   the experimental group 
was evident again concerning the post-instructional questionnaire GPA1 �  2,95 

and GPA2 �   2,61) .  
          In concluding, the results of our experiments give a strong indication that 
the use of the ACE cycle as a teaching method enhances the students’ 
understanding of real numbers in general and of irrational numbers in particular.  
 

Conclusions and Discussion 
    
Based on those reported in the present paper the following conclusions can be 
drawn: 

• The understanding of real numbers by students strikes against inherent 
difficulties, connected to the incomplete earlier understanding of 
rational numbers and the nature of irrational numbers. 

• The APOS theory and its analysis for the concept of infinity provide 
plausible explanations for the above difficulties. Reflecting on these 
explanations we designed in terms of the APOS/ACE approach a 
general plan for teaching the real numbers at an elementary level (high 
school and college introductory mathematical courses). Our didactic 
approach was based on multiple representations of real numbers and 
on flexible transformations among them.  

• Our classroom experiments, performed the last two academic years at 
the T.E.I of Patras, Greece, give a strong indication that the application 
of the APOS/ACE approach for teaching the real numbers in general 
and the irrational numbers in particular can help effectively students in 
building a powerful cognitive schema for the basic sets of numbers. 

          Notice that, in contrast to the ancient Greek mathematics, numerical 
thought is the most frequently used at school today.  This can be logically 
explained, since numerical excels geometrical culture in our contemporary 
world and therefore it plays the main role in representations that students build 
at school. Nevertheless, we have the feeling that in general the excessive use of 

                                                           
3  The Great Point Average (GPA) is a weighted average of the students’ performance. For this, 
each student’s paper is marked with A (90-100%), B (80-90%), C(80-70%), D (60-70%), or F (< 
60%). Then, if n is the total number of students and 

FDCBA nnnnn ,,,,  denote the numbers of 

students getting the marks A, B, C, D, F respectively, GPA = 
n

nnnnn ABCDF .43.2.1.0 ++++  . 

Obviously we always have 0 ≤  GPA ≤  4.     
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numerical arguments wounds the geometrical intuition. In fact, we believe that a 
rich experience of students with geometric forms, before being introduced to 
numerical arguments and analytical proofs, is not only useful, but it is  actually 
indispensable (see also Arcavi et al. 1987). However, we ought to clarify that all 
those discussed in this article must be simply considered as a series of well 
organized ideas aiming to help the instructor towards the difficult indeed subject 
of teaching the real numbers at an elementary level. In no case they should be 
considered as an effort to impose a model of teaching the real numbers. In fact, 
our general belief is that the teacher should be able to make a small “local 
research”, readapting methods and plans of the teaching process according to the 
teaching environment and the special conditions of each class (Voskoglou 2009, 
section 3). Obviously they remain some open questions for future research, the 
most important being probably how students could understand better the 
approximate correspondence of incommensurable magnitudes, which cannot be 
geometrically constructed, to points of the real axis. Among our future research 
plans is also the performance of more classroom experiments on the subject with 
different groups of students (high school students as well) in order to obtain 
statistically stronger results and conclusions.    
 
† Michael Gr. Voskoglou, Ph.D. Graduate Technological Educational Institute 
of Patras, Greece   
. 
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Appendix I: Pre-instructional questionnaire 
 
1. Which of the following numbers are natural, integers, rational, irrational and 
real numbers? 

2−  ,    
5
3

−  ,     0 ,      9, 08   ,    5  ,    7,333... ,    3,14159...π = ,    3  ,   4−  ,    

22
11

,    5 3 ,        
5

20
−   ,        ( )( )3 2 3 2+ − ,        

5
2

− ,           7 2− ,         

25
3
� �
� �
� �  
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2.  Are the following inequalities correct, or wrong? Justify your answers. 
2 14

,
3 21

<   2002
1001

>2       

3.  Convert the fraction 7
3

 to a decimal number. What kind of decimal number is 

this and why we call it so?  .  
4.  Find the integers and the decimals with one decimal digit between which 

lies 2 .  Justify your answers.     

5.  Find two rational and two irrational numbers between 10 and 20. How many 
irrational numbers are there between these two integers?  
 

Appendix II: Post-instructional questionnaire 
 
1.  Which is the exact quotient of the division 5:7?   

2.   Are 2,8254131131131…  and 2,00131311311131111… periodic decimal 
numbers? In positive case, find the period and convert the corresponding number to 
a fraction.    

3.   Find the square roots of 9, 100 and 169 and describe your method of 
calculation.   
4.   Characterize the following expressions by C if they are correct and by W if they 

are wrong: 2 =1,41 ,  2 =1,414444…, 2 ≈ 1,41,  there is no exact price for 

2 .  
5.   Find two rational and two irrational numbers between 10 and 20 . How 
many rational numbers are there between these two square roots?   

6.   Are there any rational numbers between 1
11

and 1
10

?  In positive case, write 

down one of them. How many rational numbers are between the above two 
fractions?     

7.  Are there any rational numbers between 10,21 and 10,22?  In positive case, 
write down one of them. How many rational numbers are in total between the 
above two decimals?  

8.  Characterize the following expressions as correct or wrong. In case of wrong 
ones write the corresponding correct answer.   

3 5 3 5+ = + , 3 7 3 7⋅ = ⋅ , 
2 2
9 3

=
   

, the unique solution of the 

equation x2=3 is x= 3 , ( )2
1 17 1 17− = −
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9.  Construct, by making use of ruler and compass only, the line segments of length 

5  and find the points of the real axis corresponding to the real numbers 5  and 

- 5 . Consider a length of your choice as the unit of lengths. 

10.   Is it possible for the sum of two irrational numbers to be a rational number? In 
positive case give an example.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


