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Abstract 
 
 For several categories of geometric figures in the Cartesian plane, 
necessary and sufficient conditions are established for equality between the area 
and perimeter associated with each type of figure. In two particular categories, 
the results between area and perimeter in two dimensions are extended to 
volume and surface area in three dimensional space. In the same two categories, 
the above results are then generalized to address equality between n-dimensional 
and (n−1)-dimensional geometric content for n ≥ 2. 
 

Introduction 
 
 Many curves in the Cartesian plane 2R  are associated with both an area 
and a length. A real valued function f(x) which is differentiable over a finite 

interval [a,b] may have an associated area ∫
b

a

dx)x(f  between the curve y = f(x) 

and the x-axis over [a,b] as well as an arclength [ ]∫ ′+
b

a

2 dx)x(f1  over [a,b].  

 For example, suppose that f(x) = cosh(x) for a ≤ x ≤ b. Since cosh(x) > 0 
for all real values of x, then the area between the curve y = f(x) and the x-axis is 

Area = ∫
b

a

dx)xcosh( . On the other hand, the length of the curve y = f(x) is 

Arclength = [ ]∫ ′+
b

a

2 dx)x(f1  = ∫ +
b

a

2 dx)x(sinh1  = ∫
b

a

2 dx)x(cosh  = 

∫
b

a

dx)xcosh(  (since cosh(x) > 0) = Area. Consequently the area between the 

curve generated by f(x) = cosh(x) and the x-axis over any interval [a,b] is 
numerically the same as the length of the curve generated by the same function 
over the same interval. 
 In two dimensions, each simple closed curve in 2R  has a corresponding 
area and perimeter. In three dimensions, geometric shapes in 3R  may have an 
associated volume and surface area. More generally, for each integer n ≥ 2, 
geometric shapes in nR  may have both an n-dimensional geometric content as 
well as an (n−1)-dimensional geometric content. Various common geometrical 
shapes will now be considered in order to explore conditions under which their 
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associated n-dimensional and (n−1)-dimensional geometric contents have the 
same numerical value. 
 

Cubes 
 
 A square in 2R  with edges of length s > 0 has area 2s  and perimeter 4s. 
Therefore its area is numerically equal to its perimeter if and only if 2s  = 4s if 
and only if s = 4 (since s > 0). 
 Increasing the dimension by one, a cube in 3R  with edges of length s > 0 
has volume 3s  and surface area 2s6 . Therefore its volume is numerically equal 
to its surface area if and only if 3s  = 2s6  if and only if s = 6 (since s > 0). 
 The last two special cases can be generalized as follows. If n is an integer 
and n ≥ 2, then an n-cube in nR  with edges of length s > 0 has n-dimensional 
geometric content ns  and (n−1)-dimensional geometric content 1nns2 −  [2, p. 
15]. As a result, the n-dimensional and (n−1)-dimensional geometric contents 
are numerically equal if and only if ns  = 1nns2 −  if and only if s = 2n (since s > 
0). 
 

Spheres 
 
 A circle in 2R  with radius r > 0 has area 2rπ  and circumference 2πr. 
Thus the area is numerically equal to the circumference if and only if 2rπ  = 2πr 
if and only if r = 2 (since r > 0).  

 Furthermore, a sphere in 3R  with radius r > 0 has volume 3r
3
4
π  and 

surface area 2r4π . Thus the volume is numerically equal to the surface area if 

and only if 3r
3
4
π  = 2r4π  if and only if r = 3 (since r > 0). 

 Similar to the results for cubes, the cases for spheres in 2R  and 3R  can 
be extended as follows. If n is an integer and n ≥ 2, then an n-sphere in nR  of 

radius r > 0 has n-dimensional geometric content 
⎟
⎠
⎞

⎜
⎝
⎛Γ

π

2
nn

r2 n2
n

 [4, p. 35, formula 

(110)] and (n−1)-dimensional geometric content 
⎟
⎠
⎞

⎜
⎝
⎛Γ

π −

2
n
r2 1n2

n

 [4, p. 36, formula 

(111)]. Therefore the n-dimensional geometric content is numerically equal to 
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the (n−1)-dimensional geometric content if and only if 
⎟
⎠
⎞

⎜
⎝
⎛Γ

π

2
nn

r2 n2
n

 = 
⎟
⎠
⎞

⎜
⎝
⎛Γ

π −

2
n
r2 1n2

n

 if 

and only if nr  = 1nnr −  if and only if r = n (since r > 0). 
 

Triangles 
 
 Consider a general multiple 3r-4r-5r (r > 0) of the 3-4-5 right triangle. 

Such a triangle has area )r4)(r3(
2
1  = 2r6  and perimeter 3r + 4r + 5r = 12r. 

Therefore the area and perimeter are numerically equal if and only if 2r6  = 12r 
if and only if r = 2 (since r > 0). Consequently the 6-8-10 right triangle is the 
unique multiple of the 3-4-5 right triangle whose area is numerically equal to its 
perimeter. 
 As another example, consider an arbitrary multiple 5r-12r-13r (r > 0) of 

the 5-12-13 right triangle. This triangle has area )r12)(r5(
2
1  = 2r30  and 

perimeter 5r + 12r + 13r = 30r. Therefore the area and perimeter are numerically 
equal if and only if 2r30  = 30r if and only if r = 1 (since r > 0). Consequently 
the 5-12-13 right triangle itself is its own unique multiple whose area and 
perimeter are numerically equal. 
 An equilateral triangle with sides of length s > 0 clearly has perimeter 3s. 

Furthermore, its area is )60sins)(s(
2
1

°⋅  = 2s
4
3 . Therefore its area and 

perimeter are numerically equal if and only if 2s
4
3  = 3s if and only if s = 34  

(since s > 0). Hence the only equilateral triangle with the property that its area is 
numerically equal to its perimeter is the one whose sides each have length 34  
units. 
 

Regular Polygons 
 
 Note that the preceding case of the equilateral triangle can alternately be 
described as a regular 3-sided polygon. In a similar manner, the case of the 
square above is a regular 4-sided polygon. We now generalize these cases by 
considering arbitrary n-sided regular polygons. To this end, suppose that n is an 
integer, n ≥ 3, s is a real number, and s > 0. For notational purposes we define 

s,nP  to be a regular polygon with n sides, each of length s. We further define 
A(n,s) to be the area enclosed by s,nP  and P(n,s) to be the perimeter of s,nP . 
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 Clearly s,nP  has perimeter P(n,s) = ns. In order to develop a formula for 
the area of s,nP , suppose that s,nP  has center C, apothem r, and adjacent vertices 
A and B. (See Figure 1 below.) 
 

 
Figure 1 

 

 Then each interior angle of s,nP  has measure π
−
n

2n  radians ([1, p. 99, 

Corollary 2.5.3],[3, p. 242, Corollary A],[5, p. 128, Corollary 4.17]). 
Furthermore, the segment between C and A bisects the interior angle at vertex A 

[1, p. 341, Theorem 7.3.3]. (See Figure 1 above.) Therefore θ = π
−

⋅
n

2n
2
1  = 

2n
2n π
⋅

− . Finally, r = θtan
2
s , so that r = ⎟

⎠
⎞

⎜
⎝
⎛ π

⋅
−

⋅
2n

2ntans
2
1 . (1) 

 The area of ΔABC is sr
2
1 . Furthermore, the area A(n,s) of s,nP  consists 

of n such areas. Thus A(n,s) = ⎟
⎠
⎞

⎜
⎝
⎛ sr

2
1n  = )ns(r

2
1 . Consequently we obtain the 

well known result ([1, p. 342, Theorem 7.3.5],[3, p. 86, no. 13]) that 
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    A(n,s) = )s,n(Pr
2
1
⋅ . (2) 

 
 From (2) we see that A(n,s) = P(n,s) if and only if r = 2 if and only if 

⎟
⎠
⎞

⎜
⎝
⎛ π

⋅
−

⋅
2n

2ntans
2
1  = 2 (from (1) above) if and only if s = 

⎟
⎠
⎞

⎜
⎝
⎛ π

⋅
−

2n
2ntan

4 . Thus 

the area of s,nP  is numerically equal to its perimeter if and only if  

    s = ⎟
⎠
⎞

⎜
⎝
⎛ π

⋅
−

2n
2ncot4 . (3) 

 
 It is noteworthy that for n = 3, s,nP  is an equilateral triangle. In this case 
the result in (3) is consistent with the result above for equilateral triangles. 
Furthermore, s,nP  is a square for n = 4. In this case the result in (3) is also 
consistent with the result derived above for the cube with n = 2. 

 Note also that for each integer n ≥ 3, 0 < 
2n

2n π
⋅

−  < 
2
π , so that 

⎟
⎠
⎞

⎜
⎝
⎛ π

⋅
−

2n
2ncot  > 0. Thus from (3) above we have s = ⎟

⎠
⎞

⎜
⎝
⎛ π

⋅
−

2n
2ncot4  > 0. 

Furthermore, the function s(α)= αcot4  is 1-1 for 0 < α < 
2
π . Hence for each 

integer n ≥ 3, there is a unique regular polygon with n sides whose area is 
numerically equal to its perimeter. More specifically, the unique regular n-sided 
polygon s,nP  whose area and perimeter are numerically equal is the one whose 
sides have length s satisfying (3) above. 
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