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Abstract 
 

This paper will examine the evolution of proof in mathematics 
throughout time.  The concept of mathematical proof had its beginnings with the 
ancient Greeks.  The paper will start with Thales of Miletus, who was given 
credit for the first mathematical proof, and follow the evolution of proof through 
the high point of Greek mathematics with Euclidean Geometry, 17th and 18th 
century return to mathematics, and the return of rigor and the axiomatic method 
in the 19th and 20th century. 

Introduction 
 

 Mathematics as we know it today had its beginnings when the ancient 
Greeks would take the knowledge of the Egyptians and Babylonians and make it 
into their own.  Mathematics would no longer just be a tool to solve some 
practical application, but instead become a way of thought.  The Greeks would 
be the first to transform mathematics into a logical method of viewing the world.  
A major component would be the concept of proof, which would allow them to 
distinguish with logic the difference between what can and cannot be done.  
Grabiner (1974) stated that the Greeks would transform mathematics from an 
experimental science to an intellectual science.  It would be the Greeks that 
would be the first to transform mathematical statements through logical 
arguments.  Deductive methods would again be used in the seventeenth and 
eighteenth century with the introduction of calculus and continuous functions. In 
the eighteenth and nineteenth century, mathematics would again be transformed 
with the discoveries of calculus and the discovery of non-Euclidean geometries.  
By the mid 1800s mathematics would become elaborate and abstract and a more 
rigid formal structure would find its way into the concept of proof.   
 Non-Euclidean geometry of the 1820s, various forms of abstract 
algebra in the mid 1800s, and the transfinite numbers of the 1880s would move 
mathematics away from any obvious connections to everyday life and towards a 
more abstract approach in mathematics.  At the end of the 1800s David Hilbert 
emphasized that all mathematics could be derived by starting from axioms and 
using the formal process of proof (Wolfram, 2002). 
 Mathematical proof in basic terms is simply the means of convincing 
someone or oneself that something is true using an argument based on reason.  
Bell (as cited in Almeida, 1994) gives a more precise interpretation of proof, 
which goes as follows; “A proof is a directed tree of statements, connected by 
implications, whose end point is the conclusion and whose starting points are 
either in the data or are generally agreed facts or principles” (p. 661). 
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 The evolution of the type of proofs that mathematicians use are proof 
by deduction, by mathematical induction, by transfinite induction, by exhaustion, 
by contradiction, and by construction.    

 
The Greeks and the Birth of Proof 

 
 Although more ancient societies had used mathematics, it would be the 
Greeks that would change how science and mathematics would be viewed.  It 
would all begin when the Ionian Greeks began to answer the why questions of 
the universe.  The Greeks that would be known as the Ionians emigrated from 
mainland Greece in about 1000 BC eastward to Ionia and settled on the islands 
and the coastline of Asia Minor.  It would not be enough to just know how 
something works for they also wanted to know why something works.   

The concept of proof in mathematics would have its foundation with 
the concept of deductive reasoning.  The Greeks would apply deductive 
reasoning to all aspects of thought.  Deductive reasoning operates on the 
premise there are some known or assumed factors that are true.  Through 
deductive reasoning, these facts are then used to discover new facts.  Through 
deductive reasoning known premises are known or assumed from which a new 
fact or conclusion follows.  An early example of deductive reasoning goes as 
follows: All men are mortal, Socrates is a man, and therefore Socrates is mortal. 

The Ionians would take the geometry that the Egyptians used for 
building the pyramids and make it a tool for practical application (Burke, 1995).  
Geometry would become for all Greeks the essential tool to view and understand 
the world around them.  They would also take the time to record their 
discoveries for future generations to build upon.  Mathematics would so engulf 
their society that it was almost religious in nature for their philosophy of life and 
mathematics went hand in hand.   

By the time of Pythagoras and the Pythagoreans, they believed that the 
gods made numbers the basis of world order. They believed that the divine 
harmony of the universe could be seen by numerical relationships (Turchin, 
1977).  The discovery that pleasant sounds where created by forming the whole 
number ratios such as 1:2 (octave), 2:3 (fifth), 3:4 (fourth), and so forth would 
drive their belief that all natural phenomena can be derived from whole 
numbers.  The Pythagoreans came to believe that numbers were the atoms that 
made up the universe. Clawson (1996) writes that even the Pythagoreans’ 
version of the creation story centered on “The One” which was a monad without 
differentiation or extension. The monad was surrounded by what was referred to 
as the unlimited.  The unlimited separated the monad into individual atomic 
numbers that would reorganize themselves into various geometric shapes, which 
would become the four elements earth, air, fire, and water. Within this universe 
existed harmony so that all elements of the universe were in correct whole 
number ratios.  This religious zeal for mathematics would both drive their thirst 
for new discoveries and proofs and also limit what could be discovered and 
proved (Dunham, 1990). 
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Mathematics would move away from the strictly practical applications 
of the ancient Egyptian and Babylonian societies and begin its journey toward 
the abstract and philosophical nature of mathematics.  The Greeks were the first 
known society to try and prove mathematical concepts through mathematical 
reasoning (Kleiner, 1991).   

Thales and the First Proof 
 

 Thales of Miletus (634-548 B.C.) is the first person to be given credit 
for discoveries made in mathematics.  A Thales early contribution to Ionian 
society was in the use of astronomy for maritime navigation.  He would also 
establish a school in the Greek town of Miletus.  Miletus was a trading town in 
the west coast of Asia Minor that was involved with trading with the ancient 
civilizations of Egypt and Babylonia. Thales was considered by later generations 
of Greeks as one of the seven wise men of Greece.   

His greatest contribution to mathematics was his use of deductive 
reasoning for finding new mathematical truths.  He would use known truths 
about mathematics to deduce new truths.  The Greeks would adopt this as the 
centerpiece of Greek thinking and this would become the prominent 
characteristic of Greek mathematics (Clawson, 1996). The first proof in the 
history of mathematics is considered to be when Thales proved that the diameter 
of a circle divides a circle into two equal parts.  This is the earliest known 
recorded attempt at proving mathematical concepts.   
 Thales early life as a merchant provided him with enough wealth to be 
able to devote his time to study and to travel to ancient civilizations such as 
Egypt.  In Egypt, he would use mathematics to deduce a way to measure the 
height of a pyramid using the relation of similar triangles.  Thales like many of 
the Greeks used the knowledge that was established by the Egyptians and 
Babylonian societies to seek out proof.  Eves (1963) list some other results in 
which Thales is given credited for are as follows: 

1) A circle is bisected by any diameter. 
2) The base angles of an isosceles triangle are equal. 
3) The vertical angles formed by two intersecting lines are equal. 
4) Two triangles are congruent if they have two angles and one side in 

each respectively equal. 
5) Any angle inscribed in a semicircle is a right angle. 

Thales is the also considered by some historians to be the first known 
mathematician to have constructed a circle circumscribed about a right triangle.  
This discovery so excited Thales that he sacrificed an ox to celebrate and give 
thanks for his accomplishment.  Turchin (1977) would describe Thales proof in 
the following way:                                              
 Draw a right triangle ABC.  Divide hypotenuse BC into two equal 

segments at point D.  Connect D to Point A.  If AD = DC = BD, we can 
draw a circle by having D as its center and AD as its radius. This circle 
will then pass through points A, B, and C.  Add point E creating a 
rectangle ABEC and draw diagonal DE.  The proof is now completed 
by the following reasoning: triangle ABC and AEC are equal because 
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they have side AC in common, sides AB and EC are equal and angles 
BAC and ECA are right angles and angle EAC is equal to angle BCA.  
That is triangle ADC is an isosceles triangle. 
 

Greek proofs of this time period and afterwards relied heavily on the verbal 
tradition and a tradition of construction (p. 214 – 215). 

Turchin (1977) and Davis (1981) both stated that that the simplicity of 
these basic theorems and their intuitive obviousness demonstrates that Thales 
knew the importance of proof.  These theorems were not proved because there 
was any doubt in their truth, but instead he was trying to develop a systematic 
technique to prove an idea.  Another aspect of the early proofs was that they 
were very verbal for the symbolism that we are familiar with has not been 
developed in this time in history. 

Mathematics would forever be changed with the birth of the concept of 
proof in mathematics.  With Thales the seeds of proof in mathematics had been 
planted for the future generations of mathematics to harvest.   

The mathematics of the ancient Eastern countries had virtually 
remained unchained for two millennia.  The Greeks would in one to two 
centuries create almost all the geometry that is still in use today.  The evolution 
of the mathematics of this period begins with Thales and reaches its greatest 
heights with Euclid’s famous text Elements that would influence countless 
mathematicians for generations to come.   

 
The Pythagoreans 

 
One of the best-known proofs that would come out of the Greek Age 

would be the famous Pythagorean Theorem that all school children still learn 
today.  Ironically some believe that this famous proof was not actually proven 
rigorously by Pythagoras.  On the other hand a more controversial proof would 
be accredited to a Pythagorean by the name of Hippasus of Mespontum.  He 
would show that 2  is an irrational number.  This proof would so enrage the 
Pythagoreans that it is said that they had him drowned for there belief was that 
the entire universe could be reduced to whole numbers and their ratios 
(Dunham, 1990).  The proof of 2  is an excellent example of a proof by 
contradiction.  Walthoe (1999) gives this proof for the 2 as being an irrational 
number: 

Assume that 2  is rational.  Then we can find whole numbers A and B 
such that, 

2 A
B

= , 

and A and B have no common factors. From this it follows that 
2 22A B=  

Thus 2A is even, and since the squares of the odd numbers are always 
odd, we can deduce that A is also even.  So, A = 2a where a is also a 
whole number, and re-writing the above line gives 2 22a B= .                                       
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We now know that B is also even and thus B = 2b.  This means that 2 
divides both A and B as such is a common factor.  This contradicts our 
hypothesis, which then cannot be true.  From this it follows that 2  is 
irrational (p. 2-3). 
 

Euclidean Geometry 
 

Euclid’s works represent some of the earliest use of mathematical 
proofs that have remained in use for over 2000 years.  Euclid laid the 
groundwork for future mathematics by organizing the known mathematics into 
definitions, assumptions, and postulates. 

 In his most famous work, Elements, he began with twenty-three 
definitions based on lines, points, circles, and various other concepts, ten 
assumptions, and five postulates.  The postulates represented the axioms in 
Euclid’s geometry from which through deductive reasoning he would prove 
other concepts in mathematics.  The axioms are logical beliefs that are assumed 
to be true rather than proven.  Euclid’s method of proof would become known as 
the Axiomatic Method.  Proofs now had a more formal foundation upon which 
to build upon.   

With Euclid the verbal and constructive tradition of proving would 
become more rigorous for each step of the process of the proof could now be 
justified by some definition, assumption, or axiom.  A good example of an 
axiomatic treatment of a proof would be Euclid’s proof of his Proposition 45.  I 
quote it from the English version given by Sir Thomas L. Heath (1956).  The in-
text numbers to the right of the statements are Euclid’s references to previously 
established results, definitions, assumptions, or axioms. 

Proposition 45: To construct, in a given rectilineal angle, a 
parallelogram equal to a given rectilineal figure.  Let ABCD be the 
given rectilineal figure and E the given rectilineal angle; thus it is 
required to construct, in the given angle E, a parallelogram equal to the 
rectilineal figure ABCD.  
Let DB be joined, and let the parallelogram FH be constructed equal to 
the triangle ABD, in the angle HKF which is equal to E;  [I. 42]  
Let the parallelogram GM equal to the triangle DBC be applied to the 
straight line GH, in the angle GHM which is equal to E. [I. 44] 
Then since the angle E is equal to each of the angles HKF, GHM, the 
angle HKF is equal to the angle GHM.   [C. N. I] 
Let the angle KHG be added to each; therefore the angles FKH, KHG 
are equal to the angles KHG, GHM.  But the angles FKH, KHG are 
equal to two right angles;     [I. 29] 
 Therefore the angles KHG, GHM are also equal to two right angles.  
Thus, with a straight line GH, and at the point H on it, two straight lines 
KH, HM not lying on the same side make the adjacent angles equal to 
right angles; therefore KH is in a straight line with HM. [I. 14] 
And, since the straight line HG falls upon the parallels KM, FG, the 
alternate angles MHG, HGF are equal to one another.  [I. 29] 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 8 No. 2     25 

Let the angle HGL be added to each; therefore the angles MHG, HGL 
are equal to angles HGF, HGL.    [C. N. 2] 
But the angles MHG, HGL are equal to two right angles; [I. 29]   
Therefore the angles HGF, HGL are also equal to two right angles.[C. 
N. 1] 
Therefore FG is in a straight line with GL.   [I. 14] 
And, since FK is equal and parallel to HG,   [I. 34] 
And HG to ML also, 
KF is also equal and parallel to ML;  [C. N. 1; I. 30] 
And the straight lines KM, FL join them (at their extremities); 
Therefore KM, FL are also equal and parallel;  [I. 33] 
 Therefore KFLM is a parallelogram.  And since the triangle ABD is 
equal to the parallelogram FH, and DBC to GM, the whole rectilineal 
figure ABCD is equal to the whole parallelogram KFLM. 
Therefore the parallelogram KFLM has been constructed equal to the 
given rectilineal figure ABCD, in the angle FKM which is equal to the 
given angle E. Q.E.D.  (p. 345-347) 
 
Euclid set the tradition and methodology that mathematicians for 

centuries to follow would use as their basis of proof.  Many people would 
continue to be amazed and sometimes even in disbelief in how Euclid built upon 
the past to discover the future.  John Aubrey in his book “Brief Lives” as quoted 
in Davis (1995) describes his reaction to Euclids Proposition 47 and Euclidian 
Geometry as follows: 

He was 40 years old before he looked on Geometry; which happened 
accidentally.  Being in a Gentleman’s Library, Euclid’s Elements lay 
open, and ‘twas the 47 El libri I.  He read the Proposition. By G_, sayd 
he (he would now and then sweare an empatical Oath by the way of 
emphasis) this is impossible!  So he reads the Demonstration of it, 
which referred him back to such a Proposition; which proposition he 
read.  That referred him back to another, which he also read.  Et sic 
deinceps [and so on] that at last he was demonstratively convinced of 
the trueth.  This made in him love with Geometry (p.164-165). 
 
With Euclid mathematics had a formal structure on which new 

mathematics could be discovered. 
 

The Decline of Greek Mathematics 
 

Apollonius would be the last great Greek mathematician.  The work 
that Apollonius did with conic sections would remain unchanged until Descartes 
in the seventeenth century.  There are many reasons given for the decline in 
Greek mathematics such as political and social unrest of the times, but the main 
reason that Turchin (1977) gives is the Greeks failure to create algebraic 
symbols.  The Greeks emphasis on verbal proofs and constructive proofs 
eventually limited them to only certain areas of mathematics.  
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17th and 18th Century Renaissance of Mathematics and Intuition 

 
 The next great evolution of mathematics after the Greeks would come 
in the late 17th century with mathematicians like Marin Mersenne, Rene 
Descartes, and Isaac Newton.  The centuries that followed the Greek Age was 
one of little development in the theory of proof.  Although Arithmetic and 
Algebra would continue to flourish with Hindu and Arab mathematicians, 
rigorous proof would not be of great consequence. The renaissance marked the 
end of the Dark Ages and the beginning for the quest for new knowledge in 
Europe.  For the first time since the ancient Greeks, people would be able to 
seek knowledge for the sake of knowledge.   

Europe would experience a cultural reawakening which would result in 
the cultural and scientific revolution that would occur during this time period.  
During the Renaissance finding new knowledge had become the primary 
purpose of all sciences.  The first newly recorded result in mathematics would 
be the discovery of the solution to the cubic equation in 1545.  With this 
discovery, results would become the primary drive for mathematicians.  As a 
consequence, the rigor of proofs would often be less than rigorous.  
Mathematicians would come to rely more on their intuition than in proving 
mathematics in the axiomatic way. Calculus would come to dominate this age 
for it produced many wonderful results even though the mathematician of this 
day could not necessary explain why it worked (Grabiner, 1974). 

Johannes Kepler (1571 – 1630) used mathematics to find the paths of 
planets.  He attempted to make his proofs as sound as possible by spelling out 
each step in detail and emphasizing the physical basis of his mathematical 
procedures (Field, 1999).  They were still mathematically rigorous and 
introduced the concept of observational error.  

 Kepler would influence mathematicians and scientist of his time and 
his work would be an important developmental stage for proof in the area of 
science.  Kepler’s preferred method of proof still relied heavily on Euclid for he 
started with definitions, then axioms, and then proceeded with deductions.  
Problems occurred for the deductive method did not do well with messy 
numbers from countless observations.  Often his results would be considered 
true simply by a method of induction.  Induction in this case means that if a 
statement is true in enough special cases, then one could determine that it must 
be true in all cases (Walthoe, 1999).  By today’s standards his proofs would not 
be considered proofs for they were based on collecting data and a haphazard 
method of induction.  For example Walthoe (1999) considered the following 
formula, 2( ) 41,P n n n n W= + + ∈ , which is a formula that seems to generate 
prime numbers.  We can see for that P(0) = 41, P(1) = 43, P(2) = 47, P(3) =53, 
P(4) = 61, P(5) =71 are all prime and there are many more primes that follow.  It 
would seem then P(n) does indeed generate prime numbers, but P(40) = 1681 = 
(40)(40) is a composite number (p. 3-4).  This is a perfect demonstration that 
just because a statement is true in enough special cases, that it will not be true 
for all cases.  This would be a problem with many proofs of this time period. 
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The Rise of Symbolic Notation 

 
With the great need for results came the need for a symbolism system 

to make computations more convenient.   The use of symbolism led to many 
successful results in both algebra and calculus.  Much of the general symbols 
that we still use today were first introduced in 1591 by French mathematician 
Francois Viete (Grabiner, 1974).  Symbolism would now become a more 
essential part of mathematical proof.  Symbolic notation would become an 
important tool not only for demonstration and as a pedagogical aid but would 
also become an important part of discovery in mathematics. 

For example if we consider the polynomial 
3 2( )( )( ) ( ) ( )x a x b x c x a b c x ab ac bc x abc− − − = − + + + + + − .  From 

the symbolic notation, 17th and 18th mathematicians could discover the relation 
between the roots and the coefficients of any polynomial equation of any degree.  
In this equation one can deduce that the equation has degree 3 and has three 
roots.  The result of studying problems of this nature would result in Albert 
Girard in 1629 stating that an equation of degree n had n roots (Grabiner, 1974 
& Kleiner, 1991).  This would be the basis for Gauss’s Fundamental Theorem of 
Algebra. 

The use of symbolic notation would result in proofs being easier to 
demonstrate.  Cardano’s three page proof for the formula of the general solution 
of a cubic could now be compressed into a half-page proof.  The use of symbolic 
notation would allow mathematicians to explore past the works of the ancient 
Greeks for the use of symbolic notation made proofs and mathematical concepts 
more assessable.  C. H. Edwards as quoted in Kleiner (1991) had this to say 
about Liebniz’s symbolic notation for calculus, “It is hardly an exaggeration to 
say that the calculus of Leibniz brings within the range of an ordinary student 
problems that once required the ingenuity of an Archimedes or a Newton (p. 
294).”  The success of Liebniz’s notation such as dy

dx
 and ydx∫ would help to 

reinforce the mathematicians’ beliefs in the power of symbolism to yield true 
conclusions (Grabiner, 1974). 

Leonhard Euler’s work with symbolic notation would be some of the 
greatest of his time.  Kleiner (1991) describes his proofs as grand art.  He was 
truly a master at the manipulation of symbols within a proof.  Grabiner (1974) 
and Kleiner (1991) both describe Euler’s proof of the infinite series for the 
cosine of the angle as follows: 

Euler began with the identity 
(cos sin ) cos sinnz i z nz i nz+ = + . 

Now using the binomial theorem, expand the left-hand side and equate 
the real part to  cos nz to obtain,  

2 4 4( 1) ( 1)( 2)( 3)cos (cos ) (cos ) (sin ) (cos ) (sin ) ....
2! 4!

n n z nn n n n n nnz z z z z z− −− − − −
= − + −  
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Now letting n be an infinitely large integer and z an infinitely small 
number.  Then 

2 4cos 1, sin , ( 1) , ( 1)( 2)( 3) ,....z z z n n n n n n n n= = − = − − − =  
The equation now can be rewritten as  

2 2 4 4

cos 1 ....
2! 4!

n z n znz = − + −  

Because n is infinitely large and z is infinitely small Euler concluded 
that nz must be a finite quantity such that nz = x and we get the 
following: 

2 4

cos 1 .....
2! 4!
x xx = − + −   (p. 355 & p. 295). 

 
 Algebraic analysis of this sort would be how most 18th century 
mathematicians would approach a proof.  The use of symbolic notation and the 
acceptance of many assumptions without any rigorous proof such as what is true 
for convergent series is true for divergent series, what is true for finite amounts 
is true for infinitely small and large amounts, and what is true for polynomials is 
true for power series would drive the mathematics of the 18th century (Grabiner, 
1974 & Kleiner, 1981).   

 
Logical Fallacy of the 18th Century 

 
By the end of the 18th century it had become apparent that the constant 

strive for results led to many inconsistencies and many questions to be 
answered.  One of the greatest critics of 18th century was George Berkeley (1685 
– 1753) who felt that calculus was filled with logical fallacy.  Berkeley’s 
publication of “The Analyst” includes point by point criticisms of some of the 
main arguments found in Newton’s calculus (Grabiner, 1974).   Eves (1981) 
uses Newton’s Quadrature of Curves of 1704 as an example.  In determining the 
derivative of x3, Newton essentially did the following: 

In the same time x, by growing, becomes x ο+ , the power x3 
becomes 3( )x ο+ , or   

3 2 2 33 3 ,x x xο ο ο+ + +  
and the growths, or increments, 

2 2 33 3and x xο ο ο ο+ +  
are to each other as  

2 21 3 3to x xο ο+ +   (p. 133).         
 The problem that Berkley had was the shift in hypothesis that occurred 
in this proof and in others of this time period. In one part ο  is considered as 
non-vanishing while in another part it is considered to be zero. Mathematicians 
of the day could not properly defend against the criticisms without turning to a 
rigorous treatment of limits and proofs that would not occur until the 19th 
century.  Joseph Louis LaGrange (1736 – 1813) would be one the first 
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mathematicians to attempt to put rigor in the proofs of calculus by representing 
functions using Taylor expansions.  With his attempts marks the beginning of 
the move away from intuition and blind formal manipulation of proofs in 
analysis (Eves, 1981). 
 

19th Century Mathematics: The Return of Rigor 
 

 The greatest changes in mathematics since Euclid and the ancient 
Greeks would begin in the 19th century.  The 19th century will see the 
introduction of non-Euclidean geometry, followed by many forms of abstract 
algebra, and transfinite numbers.  Within this century mathematics would make 
a great leap into abstraction and the development of mathematics subject matter.  
It would be shown by the end of the 19th century that mathematics could be done 
using only abstract structures which had no connections to everyday intuition.  
Set Theory would end this century and begin the next as the foundations of all 
mathematics (Wolfram, 2002). 
 Another important aspect that would mark the 19th century would be 
the return of rigorous proof.  Non-Euclidean Geometry and the developments of 
Quaternion numbers that did not follow the normal laws of arithmetic forced 
mathematicians to have some doubts in the rules of arithmetic and geometry.  It 
would become evident that many of the previous proofs were for the most part 
based on intuition and needed to be reexamined.  More formal definitions and 
proofs for irrational numbers, continuity, derivatives, integrals, and other 
mathematical concepts would occur within this century resulting in algebra 
becoming more popular than geometry as the tool of choice for proofs.  The 
formal structure of mathematics would mean that mathematicians could no 
longer just justify their work based on intuition (Walthoe,1999).   
 The result of this new vigor in proof in mathematics resulted in 
mathematics once again turning back to the study of axioms.  With the 
axiomatization of mathematics came the development of the foundation for both 
old and new mathematics. 
 It would be Carl Frederick Gauss (1777 – 1855) who would set the new 
standards of mathematical rigor.  With his break from the intuitive argument 
with his 1812 publication on hypergeometric series, Gauss is considered to be 
the first mathematician to give adequate consideration of the convergence of an 
infinite series (Eves, 1981). 
 Augustine-Louis Cauchy (1789 – 1857) considered by some as the 
French counterpart to Gauss would bring rigor to calculus.  In 1821 he would 
develop an acceptable theory of limits from which he would define continuity, 
differentiation, and the definite integral.  His rigor would inspire others to rid 
analysis of intuitive reasoning and informal manipulation.   
 Another key contributor of rigor would be Karl Weierstrass (1815 – 
1897).  Weierstrass pushed for a mathematical foundation that began with 
logical development of the real numbers, then the limit concept, continuity, 
differentiability, convergence, and divergence all defined in terms of the number 
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system.  It would be his work that would result in the “epsilon-delta” definition 
of limits which goes as follows: 

If, given any ε  > 0, there exists a δ > 0 such that ( )f x L ε− <  when 

0 x c δ< − < , then we say L is the Limit of f(x) as x c→ . 
 Eves (1981) would have this to say about Weierstrass’s 
accomplishments and the efforts for rigor in mathematics:  

Gone are all such phrases as “successive values”, “ultimate ratios”, 
“taken as small as one wishes”, and “approaches indefinitely close to”.  
Gone are all the references to growing magnitudes and moving points 
and the abandonment of infinitely small quantities of higher order.  All 
that remains in this precise and unambiguous language and symbolism 
are real numbers, the operation of addition (and its inverse, 
subtraction), and the relationship “less than” (and its inverse, “greater 
than”) (p. 139). 
 

 Throughout the 19th century rigor steadily increased and by the end of 
the century came the reemergence of the Axiomatic Method.  As the 20th century 
approached, it would give way once again to the rebirth of the Axiomatic 
Method which would became a distinctive feature of 20th century mathematics 
(Kleiner, 1991). 

 
20th Century Proof 

 
  In the early 20th century the axiomatic method was well 
established in a variety of mathematical areas.  In algebra, major works could be 
found in group theory (1904), field theory (1910), and ring theory (1914).  In 
analysis, axiomatic formulations could be found in function spaces (1906), 
general analysis, Banach spaces (1922), Hilbert space (1929), and Hausdoff 
topological space (1914).  Geometry was impacted by Hilbert’s Foundation of 
Geometry (1899) and Veblen and Young’s abstract treatment on projective 
geometry (1910 – 1919).  Set theory had Zermolo’s axiomatization of set theory 
(1908), Fraenkel’s improvements (1921), von Neumann’s version (1925), and 
Russel and Whitehead’s three-volume Principia Mathematica  (1910 – 1913) 
(Kleiner, 1991). 

Bourbaki in Kleiner(1991) gives a wonderful description of the 
axiomatic method of the first part of the 20th century: 

What the axiomatic method sets as its essential aim, is exactly that 
which formalism by itself cannot supply, namely the profound 
intelligibility of mathematics.  Just as the experimental method starts 
from the a priori belief in the permanence of natural laws, so the 
axiomatic method has its cornerstone in the conviction that, not only is 
mathematics not a randomly developing concatenation of syllogisms, 
but neither is it a collection of more or less “astute” tricks, arrived at by 
lucky combinations, in which purely technical cleverness wins the day.  
Where the superficial observer sees only two, or several, quite distinct 
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theories, lending one another “unexpected support” through the 
intervention of a mathematician of genius, the axiomatic method 
teaches us to look for deeper-lying reasons for such a discovery, to find 
the common ideas of these theories, buried under the accumulation of 
details properly belonging to each of them, to bring these ideas forward 
and to put them in their proper light (p. 303).  
 
One problem that would occur with proofs in the late 20th century is the 

problem of proofs simply getting to long.  Some proofs would span 400 pages 
which makes it very difficult to verify with any adequate procedure.  Kolata 
(1976) describes a situation in which one mathematician comes with a proof of a 
statement and another mathematician comes up with a proof of its negation. 
They exchange proofs and each mathematician can not find any error in the 
others works. A third party then reads the two and claims one is correct.  The 
problem is that both proofs are very long and very complicated making it very 
difficult to verify with any accuracy. 
 Both Paul Erdos and Ronald Graham believe that the length of many 
proofs have reached the limit in which a human mind can handle.  Some 
mathematicians such as Michael Rabin of the Hebrew University in Jerusalem 
have expressed a desire to reduce the definition of proof and allow computers to 
aid in the proofs allowing for a very low probability error (Kolata, 1976). 
 

Computer Age 
 

 A popular proof that is attributed to the computer is the 1976 resolution 
of the 1850 four-colour conjecture of topology which stated that any map or 
sphere needs at most four colors to color it so that no two countries sharing a 
common boundary will have the same color.  Kenneth Appel and Wolfgang 
Haken of the University of Illinois established the conjecture using a computer 
analysis.   

The actual type of proof that they would use would be one of 
contradiction.  They assumed that there existed a map which needed five colors 
and proceeded to show that this would lead to a contradiction.  The final proof 
consisted of several hundred pages and took over one thousand hours of 
computer time.  Over 2000 possible cases were examined with close to one 
billion logical options to verify reducibility.  The main problem with this type of 
proof is indeed its length.  Many mathematicians still do not believe that this 
computer result is an actual proof of the four-colored conjecture for it basically 
impossible to ever verify the entire proof within ones lifetime (Albers, 1981, 
Eves, 1990, Hunt, 2000, & MacKenzie, 1999).  In an address to the American 
Mathematical Association in 1990, R. Hersh quoted the Halmos’s objections of 
the four-colour proof: 

I do not find it easy to say what we have learned from all that.  We are 
still far from having a good proof of the Four-Colour Theorem.  I hope 
as an article of faith that the computer missed the right concept and the 
right approach.  100 years from now the map theorem will be, I think, 
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an exercise in a first-year graduate course, provable in a couple of 
pages by means of the appropriate concepts, which will be completely 
familiar by then.  The present proof relies in effect on an Oracle, and I 
say down with Oracles!  They are not mathematics (p. 663). 
 

This proof was a far cry of a short and elegant proof that the 19th century 
mathematicians strived to obtain.  
 

Conclusion 
 
 Since the dawn of proof with the ancient Greeks, determining what 
constitutes a proof has been an ongoing debate among mathematicians.  Rigor in 
proof has and still is an issue in the presentation of mathematical concepts and 
ideas.  It is a fine balance that one must obtain to construct a proof that is sound 
and correct while also being understandable by others. 
 Another constant issue is the fight for ever increasing results which can 
lead to proofs that may be deemed less than rigorous.  The difficulties of some 
proofs have also lead more and more mathematicians to turn to the use of 
computers which have lead to problems of verification.  
I feel that Hersh as quoted in Almeida (1996) best summarizes the notion of 
proof: 

Our inherited notion of ‘rigorous proof’ is not carved in marble.  People 
will modify that notion, will allow machine computation, numerical 
evidence, probabilistic algorithms, if they find it advantages to do so.  
Then we are misleading our pupils, if in the classroom we treat 
‘rigorous proof’ as shibboleth (p. 663). 

 
† David C. Bramlett, Ph.D., Jackson State University, MS, USA 
‡ Carl T. Drake, Ph.D., Jackson State University, MS, USA 
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