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Abstract 

 
In earlier papers we have developed a fuzzy model for the process of 

learning and we have used the total possibilistic uncertainty for measuring 
student groups’ learning skills. In this paper based on the above model we apply 
the centroid defuzzification technique as an alternative assessment method. 
These two methods, which treat differently the idea of the students’ 
performance, are compared to each other and examples are presented illustrating 
the differences between them. Fuzzy methods for the students’ individual 
assessment are also studied.  

 
Introduction 

 
The concept of learning is fundamental to the study of human cognitive 

action. But while everyone knows in general what learning is, the understanding 
of its nature has proved to be complicated. This basically happens because it is 
very difficult for someone to understand the way in which the human mind 
works, and therefore to describe the mechanisms of the acquisition of 
knowledge by the individual. The problem is getting even harder by taking into 
consideration the fact that these mechanisms, although they appear to have some 
common general characteristics, they actually differ in details from person to 
person.  

There are very many theories and models developed by psychologists 
and education researchers for the description of the mechanisms of learning. 
Voss (1987) adopted an argument raised much earlier by Ferguson (1956) and 
others that learning is a specific case of the general class of transfer, i.e. the use 
of already existing knowledge to produce new knowledge. Accordingly, Voss 
argued that learning basically consists of successive problem – solving 
activities, in which the input information is represented of existing knowledge, 
with the solution occurring when the input is appropriately interpreted. The 
process involves the following stages: Representation of the input data, 
interpretation of this data in order to produce the new knowledge, 
generalization of the new knowledge to a variety of situations and 
categorization of the generalized knowledge. 

More explicitly the representation of the stimulus input is relied upon 
the individual’s ability to use contents of his (her) memory in order to find 
information that will facilitate a solution development. Learning consists of 
developing an appropriate number of interpretations and generalizing them to a 
variety of situations. When the knowledge becomes substantial, much of the 
process involves categorization, i.e. the input information is interpreted in terms 
of the classes of the existing knowledge. Thus the individual becomes able to 
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relate new information to his (her) knowledge structures that have been 
variously described as schemata, or scripts, or frames. 

The knowledge that students have about various concepts is usually 
imperfect, characterized by a different degree of depth. From the teacher’s point 
of view on the other hand there exists vagueness about the degree of students’ 
success in each stage of the learning process. All these gave us the impulsion to 
introduce principles of fuzzy logic in order to achieve a better and more realistic 
representation of the process of learning. In fact, in earlier papers we have 
developed a fuzzy model for learning (Voskoglou 1999) and we have used the 
total possibilistic uncertainty in assessing student groups’ learning abilities 
(Voskoglou 2009). In this paper we shall use the centroid defuzzification 
technique that will enable us to compare the learning skills of student groups’ at 
each stage of the learning process. We shall also study methods of students’ 
individual assessment. For general facts on fuzzy sets and logic we refer freely 
to the book of Klir and Folger (1988).    
 

The fuzzy model 
Our fuzzy model developed in Voskoglou (1999) is based on the above 

mentioned Voss’s theory about learning and its main ideas are the following: 
Let us consider a group of n students, n≥ 2, during the learning process of a 
subject matter in the classroom. We denote by Ai , i=1,2,3 , the stages of 
representation/interpretation, generalization and categorization respectively, and 
by a, b, c, d, and e the linguistic labels of negligible, low, intermediate, high and 
complete success respectively at each of the Ai’s.  We notice that, in order to 
make our model technically simpler, we have considered the stages of 
representation and interpretation of the Voss’s approach as a unique stage. This 
is close to the reality, since representation is actually an introductory stage of the 
learning process.  

Set U={a, d, c, d, e} and denote by nia, nib, nic, nid and nie the numbers 
of students that have achieved negligible, low, high and complete success at 
state Ai respectively, i=1,2,3, In order to represent the Ai’s as fuzzy subsets of U. 
we define the membership function 

iAm  in terms of the frequencies, i.e. by 

iAm (x) = 
n

nix  for each x in U.  Then we can write Ai = {(x, 
n

nix ) :  x∈U}.  

 A student’s profile during the learning process is defined to be an ordered triple 
of the form  

s = (x, y, z), where x, y and z are elements of U that denote the student’s success 
at the stages A1, A2 and A3 respectively. The rest of our model involves the 
representation of all possible students’ profiles as a fuzzy subset of 3U  (through 
the proper definition of the membership degree sm of each profile s) and the 
calculation of the possibilities of all profiles by the well known formula  
rs=

}max{ s

s

m
m ,   where max{ms} denotes the maximal value of ms , for all s in U3. 
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In other words rs is the “relative membership degree” of s with respect to the 
membership degrees of the other profiles.   

In this way we obtain a qualitative view of the students’ performance 
during the learning process of a subject matter in the classroom. This is 
reinforced by Shackle (1961), and many others after him, who argues that 
human cognition can be formalized more adequately by possibility rather, than 
by probability theory. We recall the probability for fuzzy data is defined by ps  =  

3

s

s
s U

m
m

∈
∑

, which gives that  ps ≤ rs for all s in U3.  This is compatible to the 

common logic, since whatever it is probable it is also possible, but whatever is 
possible need not be very probable.               

We must emphasize that in our model we considered the process of 
learning a subject matter in the classroom only and not the process of learning 
by the individual in general. In fact, learning is a very composite and 
complicated action of the human mind, whose stages could be reached out of the 
class, or in a next class, or even during sleeping! Therefore it is inevitable for 
someone to put some restrictions in order to attempt a mathematical description 
of the process of learning, even when using principles of fuzzy logic for this 
purpose.   

A basic principle of the information theory states that the amount of 
information obtained by an action can be measured by the reduction of 
uncertainty that results from the action. Thus a measure of a student group’s 
uncertainty can be also adopted as a measure of its performance. In fact, the 
lower is a group’s uncertainty after the learning process, which indicates a 
greater reduction of it during the process, the better is its performance. 

In Voskoglou (2009) we have used a student group’s total possibilistic 
uncertainty (i.e. the sum of strife and non specificity) as a measure of its 
performance during the learning process. The above measure is calculated in 
terms of the ordered possibility distribution of the student group (for more 
details the reader may look also at Voskoglou 2012b). Other measures of 
uncertainty that are commonly used in fuzzy logic involve the total probabilistic 
uncertainty, i.e. the classical Shannon’s entropy expressed in terms of the 
Dempster-Shafer mathematical theory of evidence for use in a fuzzy 
environment (e.g. see Voskoglou 2012a) and the ambiguity which is a 
generalization of the Shannon’s entropy in possibility theory that captures both 
strife and non specificity (e.g. see Perdikaris, 2012).  
 

The Centroid defuzzification technique 
 

Another popular technique of producing a quantifiable result from 
fuzzy data (defuzzification) is the centroid method, in which the coordinates of 
the centre of gravity of the graph of the membership function involved provide 
an alternative measure of a group’s performance (e.g. see van Broekhoven  and 
De Baets 2006). The application of the ‘centroid method’ in practice is simple 
and evident and, in contrast to the measures of uncertainty, needs no 
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complicated calculations in its final step. Further this method enables one to 
compare a student group’s performance at each stage of the learning process. 
The techniques that we shall apply here have been also used in Subbotin et al. 
2004, in Voskoglou and Subbotin 2012, etc. 

Given a fuzzy subset A = {(x, m(x)): x∈U} of the universal set U of 
the discourse with membership function m: U → [0, 1], we correspond to each 
x∈U an interval of values from a prefixed numerical distribution, which 
actually means that we replace U with a set of real intervals. Then, we construct 
the graph F of the membership function y=m(x).There is a commonly used in 
fuzzy logic approach to measure performance with the pair of numbers (xc, yc) 
as the coordinates of the centre of gravity, say Fc, of the graph F, which we can 
calculate using the following well-known from Mechanics formulas:  

 

,F F
c c

F F

xdxdy ydxdy
x y

dxdy dxdy
= =
∫∫ ∫∫

∫∫ ∫∫
(1) 

Concerning the learning process, we characterize an individual’s 
performance as very low (a) if x ∈  [0, 1), as low (b) if x ∈  [1, 2), as 
intermediate (c) if x∈  [2, 3), as high (d) if x ∈  [3, 4) and as very high (e) if x 
∈  [4, 5] respectively. Therefore, if x ∈  [1, 2), then m(x) = m(a), if x ∈  [1, 2) 
then m(x)= m(b) and so on.  Thus, in this case the graph F of the corresponding 
fuzzy subset of U is the bar graph of Figure 1 consisting of five rectangles, say 
Fi,  i=1,2,3, 4, 5 , whose sides lying on the x axis have length 1. 

 
Figure 1:  Bar graphical data representation 
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     In this case
F

dxdy∫∫ is the area of F which is equal to
5

1
i

i
y

=
∑ . Also 

F

xdxdy∫∫
 

5 5

1 1 0 1

i

i

y i

i iF i

xdxdy dy xdx
= = −

= =∑ ∑∫∫ ∫ ∫
5

1 1

i

i
i i

y xdx
= −

= =∑ ∫
 

5

1

1 (2 1)
2 i

i
i y

=

−∑ , and 

F

ydxdy∫∫ =
5 5

1 1 0 1

i

i

y i

i iF i

ydxdy ydy dx
= = −

=∑ ∑∫∫ ∫ ∫ =  2

1 10

1
2

iyn n

i
i i

ydy y
= =

=∑ ∑∫ . Therefore 

formulas (1) are transformed into the following form: 

(2)

1 2 3 4 5

1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 2 3 4 5

3 5 7 91 ,
2

1 .
2

c

c

y y y y yx
y y y y y

y y y y yy
y y y y y

⎛ ⎞+ + + +
= ⎜ ⎟+ + + +⎝ ⎠

⎛ ⎞+ + + +
= ⎜ ⎟

+ + + +⎝ ⎠  
Normalizing our fuzzy data by dividing each m(x), x∈U, with the sum 

of all membership degrees we can assume without loss of the generality that 
y1+y2+y3+y4+y5 = 1. Therefore we can write: 

( )

( )
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 3 5 7 9 ,
2
1
2

c

c

x y y y y y

y y y y y y

= + + + +

= + + + +
(3) 

with yi = 
∑
∈Ux

i

xm
xm

)(
)(

.. 

But 0≤ (y1-y2)2=y1
2+y2

2-2y1y2, therefore y1
2+y2

2 ≥ 2y1y2  ,with the 
equality holding if, and only if, y1=y2.  In the same way one finds that y1

2+y3
2 

≥ 2y1y3, and so on. Hence it is easy to check that  

 (y1+y2+y3+y4+y5)2 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2), with the equality holding if, and 

only if y1=y2=y3=y4=y5.  

  But y1+y2+y3+y4+y5 =1,  therefore 1 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2)  (4), 

with the equality holding if, and only if  y1=y2=y3=y4=y5=
5
1  . Then the first of 

formulas (3) gives that xc = 
2
5 .  Further, combining the inequality (4) with the 

second of formulas (3) one finds that 1≤ 10yc, or yc ≥  
10
1

  
Therefore the unique 

minimum for yc corresponds to the centre of mass Fm (
2
5 ,

10
1 ). 
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  The ideal case is when y1=y2=y3=y4=0 and y5=1. Then from formulas 
(3) we get that xc = 

2
9  and yc = 

2
1 . Therefore the centre of mass in this case is 

the point Fi (
2
9 , 

2
1 ). 

  On the other hand the worst case is when y1=1 and y2=y3=y4= y5=0. 
Then for formulas (3) we find that the centre of mass is the point Fw (

2
1 , 

2
1 ). 

Therefore the “area” where the centre of mass Fc   lies is represented by the 
triangle Fw Fm Fi of Figure 2.  

 
Figure 2:  Graphical representation of the “area” of the centre of mass 

 
Then from elementary geometric considerations it follows that the greater is the 
value of xc the better is the group’s performance. Also, for two groups  with the 
same xc ≥ 2,5, the group having the centre of mass which is situated closer to Fi   
is the group with the higher yc; and for two groups with the same xc <2.5 the 
group having the centre of mass which is situated farther to Fw is the group with 
the lower yc. Based on the above considerations it is logical to formulate our 
criterion for comparing the groups’ performances in the following form: 

• Among two or more groups the group with the biggest xc   performs 
better. 

• If two or more groups have the same xc ≥ 2.5, then the group with the 
higher yc performs better. 

• If two or more groups have the same xc < 2.5, then the group with the 
lower yc performs better. 

The following example illustrates the use of the centroid technique in practice:  
       EXAMPLE:  In this example we use the fuzzy data obtained by a classroom 
experiment performed some years ago with two groups of 35 and 30 students 
respectively of  the School of Management and Economics of the Graduate 
Technological Educational Institute of Messolonghi, in Greece, when I was 
teaching the definite integral  (see section 4 of Voskoglou 2009). 
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  Let us denote by ijA  the fuzzy subset of U attached to the stage Aj , 
j=1,2,3 of the process of learning with respect to the group i, i= 1,2. Then the 
fuzzy data mentioned above can be written as follows   

First group: 

A11 = {(a, 0), (b, 0), (c, 35
17 ), (d, (),35

8 e, 35
10 )}. A12 = {(a, 35

6 ), (b, 35
6 ), (c, 

35
16 ),(d, 35

7 ), (e, 0)} and  

A13 = {(a, 35
12 ), (b, 35

10 ), (c, 35
13 ),(d, 0),(e, 0)} 

 
       Second group: 

A21={(a, 0), (b, 30
6 ), (c, 30

15 ), (d, 30
9 ), (e, 0)}, A22={(a, 30

6 ), (b, 30
8 ), (c, 30

16 ),(d, 
0),(e, 0)} and  

A23={(a, 30
12 ), (b, 30

9 ), (c, 30
9 ), (d, 0), (e, 0)}.       

Applying the first of formulas (3) to the above fuzzy data one finds:             

xc11=
1
2

(5. 35
17  + 7. 8

35  + 9. 10
35 ) = 231

70
=3,3 and xc21=

1
2

(3. 6
30  + 5. 15

30  + 7. 9
30 ) = 

156
60

=2,6. 

Therefore by our criterion the first group demonstrates a better performance at 
the stage of representation/interpretation. 
       Similarly one finds that 

xc12=
1
2

( 6
35 +3. 6

35 +5. 16
35 +7. 7

35 )= 193
70

≈ 2,757and xc22=
1
2

( 6
30  + 3. 8

30  + 

5. 16
30 )= 110

60
≈ 1,833. 

Therefore the first group demonstrates again a better performance at the sage of 
generalization. 

Finally for the last sage of categorization on finds that 

xc13=
1
2

( 12
35 +3. 10

35 +5. 13
35 )= 107

70
≈ 1,528 and xc23=

1
2

( 12
30  + 3. 9

30  + 5. 9
30 ) = 84

60
 = 

1,4. Therefore the first group demonstrates again a slightly better performance. 
 

In concluding the performance of the first group was found to be better 
at all stages of the learning process. We observe also that the more advanced is a 
stage, the less good was the performance of each group. This was logically 
expected due to the obvious increasing difficulty of each stage 
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       Notice that in Voskoglou 2009 we found that the total possibilistic 
uncertainty for the first group is 2,97 , while for the second one is 2,322. But this 
means that the second group demonstrates a better performance, which 
contradicts our previous conclusion! This is due to the fact that the above two 
approaches treat differently the idea of a group’s performance. In fact, in the 
first case the student group’s uncertainty during the learning process is 
connected to its capacity in obtaining the relevant information. In other words, 
in this case we are looking for the mean group’s performance. On the other 
hand, in the case of the centroid technique the weighted average plays the main 
role, i.e. the results  of the performance close to the ideal performance have 
much more weight than those close to the lower end.  In other words, in this case 
we are mostly looking at the quality of the performance. Therefore some 
differences could appear in boundary cases. In concluding, it is argued that the 
combined application of these two approaches helps in finding the ideal profile 
of performance according to the user’s personal criteria of goals and therefore to 
finally choosing the appropriate approach for measuring the results of his/her 
experiments.        

Notice also that in Voskoglou 2009-10 we have developed a stochastic 
model by introducing a finite Markov chain on the stages of the learning 
process. This model is helpful in understanding the “ideal behaviour” of 
learners, in which they proceed linearly from representation to the final stage of 
categorization through the other stages of the process of learning. However, it 
has been observed that students take actually individual routes during learning. 
Therefore a qualitative study of all possible students’ profiles becomes 
necessary for a deeper understanding of the mechanisms of learning, which is 
obtained through the use of our fuzzy model. On the other hand, the 
development of a fuzzy model in general has the disadvantage of depending on 
the researcher’s personal criteria. In case of our model for learning for example, 
these criteria are involved in characterizing the students’ performance in terms 
of a set of linguistic labels which are fuzzy themselves, in choosing the proper 
membership function and the proper defuzzification technique, etc. Therefore 
the use of our stochastic model as a tool for the validation of the fuzzy one 
seems to be a good solution in achieving a worthy of credit mathematical 
analysis of the process of learning (see also the book Voskoglou 2011). 

3. Methods of individual assessment of students’ learning skills  
One of the main teachers’ concerns is the assessment of their students’ 

knowledge and aptitudes. In fact, our society demands not only to educate, but 
also to classify the students according to their qualifications as being suitable or 
not to carry out certain tasks or to hold certain posts.  According to the standard 
methods of assessment, a mark, expressed either with a numerical value within a 
given scale (e.g. from 0 to 10) or with a letter (e.g. from A to F) corresponding 
to the percentage of a student’s success, is assigned in order to characterize 
his/her performance. However, this crisp characterization, based on principles of 
the bivalent logic (yes-no), although it is the one usually applied in practice, it is 
not probably the most suitable to determine a student’s performance. In fact, the 
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teacher can be never absolutely sure about a particular numerical grade 
characterizing the student’s abilities and skills. On the contrary, fuzzy logic, due 
to its nature of including multiple values, offers a wider and richer field of 
resources for this purpose.    

Our fuzzy model for learning presented above can be used also (in a 
simplified form) for the students’ individual assessment. In fact, if n=1, then 
from the definition of the membership function 

iAm  it becomes evident that in 
each Ai, i = 1, 2, 3, there exists a unique element x of U with membership degree 
1, while all the others have membership degree 0. Consequently there exists a 
unique student profile s with ms= 1, while all the others have membership 
degree 0. For example, if  

2 3
( ) 1, ( ) 1, ( ) 1

iA A Am d m c m b= = =  , then s = (d, c, b). 
In other words, each student is characterized in this case by a unique profile, 
which gives us the requested information about his/her performance. 

A. Jones  developed a fuzzy model to the field of Education involving 
several theoretical constructs related to assessment, amongst which is a 
technique for assessing the deviation of a student’s knowledge with respect to 
the teacher’s knowledge , which is taken as a reference (see Jones et al. 1986, 
Espin and Oliveras 1997). Here we shall present this technique, properly 
adapted with respect to our fuzzy model.      

Let X= {A1, A2, A3} be the set of the stages of the learning process as 
they have been considered in section 2. Then a fuzzy subset of X of the form  
{(A1, m(A1)), (A2, m(A2)), (A3, m(A3)}can be assigned to each student , where the 
membership function m takes the values 0, 0.25, 0.5, 0.75, 1 according to the 
level of the student’s performance at the corresponding step. The teacher’s fuzzy 
measurement is always equal to 1, which means that the fuzzy subset of X 
corresponding to the teacher is {(A1, 1), (A2, 1), (A3, 1).  

Then the fuzzy deviation of the student i with respect to the teacher is 
defined to be the fuzzy subset Di={(A1,1-m(A1)), (A2, 1-m(A2)), (A3,1- m(A3)} of 
X. This assessment by reference to the teacher provides us with the ideal student 
as the one with nil deviation in all his/her components and it defines a 
relationship of partial order among students’.  The following example illustrates 
this theoretical framework in practice. 
       EXAMPLE: The same experiment with that mentioned in the example of 
section 2 was repeated recently with a group of 35 students of the School of 
Techological Applications (future engineers) of the Technological Educational 
Institute of Patras, Greece.  This time in assessing the students’ individual 
performance by applying the A. Jones technique we found the following types 
of deviations with respect to the teacher: 
D1 = {(A1, 0.75), (A2, 0.75), (A3, 1)} (this type of deviation was related with 2 
students) 
D2 = {(A1, 0.5), (A2, 1), (A3, 1)} (related with 7 students) 
D3 = {(A1, 0.5), (A2, 0.75), (A3, 1)} (related with 5 students) 
D4 = {(A1, 0.5), (A2, 0.75), (A3, 0.75)} (related with 4 students) 
D5 = {(A1, 0.25), (A2, 0.5), (A3, 0.75)} (related with 3 students) 
D6 = {(A1, 0.25), (A2, 0.25), (A3, 0.5)} (related with 6 students) 
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D7 = {(A1, 0), (A2, 0.5), (A3, 0.75)} (related with 1 student) 
D8 = {(A1, 0), (A2, 0.5), (A3, 0.5)} (related with 2 students) 
D9 = {(A1, 0), (A2, 0.25), (A3, 0.5)} (related with 1 student) 
D10 = {(A1, 0), (A2, 0.25), (A3, 025)} (related with 3 students) 
D11 = {(A1, 0), (A2, 0), (A3, 0.25)} (related with 1 student) 

On comparing the above types of students’ deviations it becomes 
evident that the students possessing the type D3 of deviation demonstrate a better 
performance than those possessing the type D1, the students possessing the type 
D4 demonstrate a better performance than those possessing the type D3 and so 
on. However, the students possessing the type D1 demonstrate a better 
performance at the stage of generalization than those possessing the type D2, 
who demonstrate a better performance at the stage of 
representation/interpretation. Similarly, the students possessing the type D6 
demonstrate a better performance at the steps of generalization and 
categorization than the student possessing the type D7, who demonstrates a 
better performance at the step of representation/interpretation.  In other words, 
the students’ deviations define a relationship of partial order among the 
students with respect to their total performance.  

Notice that each deviation Di corresponds to a student’s profile si, i = 1, 
2,…. , 11. For example, the deviation D1 corresponds to the student {(A1, 0.25), 
(A2, 0.25), (A3, 0)}, whose profile is s1 = (b, b, a). Applying the same argument 
one finally finds the following profiles characterizing the students’ performance 
in our experiment: 
s1 = (b, b, a)   (this profile is related with 2 students) 
s2 = (c, a, a)   (related with 7 students) 
s3 = (c, b, a)   (related with 5 students) 
s4 = (c, b, b)   (related with 4 students) 
s5 = (d, c, b)   (related with 3 students) 
s6 = (d, d, c)   (related with 6 students) 
s7 = (e, c, b)   (related with 1 student) 
s8 = (e, c, c)   (related with 2 students) 
s9 = (e, d, c)   (related with 1 student) 
s10 = (e, d, d)   (related with 3 students) 
s11 = (e, e, d)   (related with 1 student) 

In other words, the A. Jones technique is actually equivalent to our 
method for the students’ individual assessment. The only difference is that the 
former expresses the fuzzy data with numerical values, while the latter expresses 
it qualitatively in terms of the fuzzy linguistic labels of U. 

Notice also that the teacher may put a target for his/her class and may 
establish didactic strategies in order to achieve it. For example he/she may ask 
for the deviation, say D, with respect to the teacher to be 0.25 0.5D≤ ≤ , for all 
students and in all steps.  In this case the application of the A. Jones technique 
could help the teacher to determine the divergences with respect to this target 
and hence to readapt his/her didactic plans in order to diminish these 
divergences.   
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4. Conclusions 
The following conclusions can be drawn from those presented in this paper: 

• Fuzzy logic, due to its nature of including multiple values, offers a 
wider and richer field of resources for assessing the students’ 
performance than the classical crisp characterization does by assigning 
a mark to each student. 

• In earlier papers we have developed a fuzzy model for the process of 
learning a subject matter in the classroom and we have used the total 
possibilistic uncertainty in assessing student groups’ learning abilities. 
In this paper we used the centroid defuzzification technique that 
enabled us to compare the learning skills of student groups’ at each 
stage of the learning process. These two assessment methods, which 
treat differently the idea of students’ performance, were compared to 
each other and examples were given to illustrate the differences 
between them. 

• Our fuzzy model can be also applied in a simplified form for the 
students’ individual assessment. In this case a qualitative profile of the 
form (x, y, z) is assigned to each student, where x, y and z are fuzzy 
linguistic labels characterizing the degree of the student’s success in 
each stage of the learning process. 

• The A. Jones technique for assessing the deviation of a student’s 
knowledge with respect to the teacher’s knowledge can be also applied 
for measuring the students’ learning skills on an individual basis. This 
technique is actually equivalent with our method, the only difference 
being that it expresses the fuzzy data with numerical values. However 
this approach is more helpful when the teacher puts a target for his/her 
class and establishes didactic strategies in order to achieve it. 

 

 †Michael Gr. Voskoglou, Ph.D.Graduate Technological Educational Institute of 
Patras, Greece   
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