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Abstract 

 
In this paper I describe a classroom experience in which a group of 

prospective secondary mathematics teachers used Sketchpad to discover and 
extend Viviani’s theorem to special polygons. While Sketchpad was 
instrumental in discovering and visualizing Viviani’s theorem and some of its 
extensions, the class also discussed proofs to gain further insights into 
understanding why the proposed theorems hold for the corresponding polygons.  

 
Introduction 

 
As a long-life learner of mathematics, I experience great joy when I 

discover and extend mathematical problems, conjectures, and theorems on my 
own. As a teacher of mathematics, nothing gives me greater happiness than my 
students discovering a conjecture on their own. One of the most powerful tools 
for supporting students’ explorations of, and engagement with, mathematical 
concepts and processes is Dynamic Geometry such as the Geometer’s Sketchpad 
(GSP, Jackiw, 2001), GeoGebra (Hohenwarter, 2002), and Cabri (Texas 
Instruments, 1998).  

One of the most effective features of Dynamic Geometry, and technology in 
general, is its capacity to allow learners to represent complex mathematical ideas 
in new ways and to manipulate “abstract entities in a ‘hands-on’ way” (Perkins, 
Schwartz, West, & Wiske, 1995). It also offers unparallel opportunities to 
investigate mathematical problems deeply. Of course, these benefits are not 
realized automatically by just using Dynamic Geometry. The investigations 
should be supplemented with the explanatory power of proof. Learners should 
not only use Dynamic Geometry to discover conjectures and verify them 
empirically, but they should construct mathematical arguments to understand 
why a conjecture is true. A mathematical argument allows learners to connect 
concepts and representations and possible extend the conjecture to other 
mathematical situations.  

In this paper I relate a classroom experience in which a group of prospective 
secondary mathematics teachers investigated and extended Viviani’s theorem to 
special polygons. The class started with the discovery and proof of said theorem. 
Needless to say, GSP facilitated its discovery.    

 
Discovering and Proving Viviani’s theorem 

 
I enjoy presenting mathematical problems embedded in “real-world” 

situations to further motivate students to explore and solve them. The story 
embedded in the problem also often provides us with a sense of how we can use 
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mathematics to model problems. I guided my students to discover Viviani’s 
theorem using the following applied context: 

Three towns are the vertices of an equilateral triangle. The sides of the 
triangle are the roads that connect the towns. A picnic area will be 
constructed such that the sum of its distances to the roads is as small as 
possible. 1) What are all the possible locations for the picnic area? 2) For 
practical reasons, what is the best location for the picnic area? Justify your 
response.  
Before students used GSP to gain insight into the solution of the problem, I 

asked them to predict what the optimal place to construct the picnic area is. 
Most students predicted that the optimal point was the center of the triangle. 
Students then used GSP to construct the configuration (Fig. 1) and verify 
empirically their initial conjecture.  

As students dragged point P to verify their prediction, they noticed an 
interesting and surprising pattern: the sum of the distances does not change no 
matter what interior point they chose. A few of them noticed that the pattern also 
holds when P is on any side of the triangle. After naming this conjecture in 
honor of its original discoverer, the class summarized the results as follows:  

Viviani’s conjecture: Let P be any point in the interior of an equilateral 
triangle or on any of its sides. The sum of the distances from P to the sides 
of the triangle is a constant.  
Examining the data students concluded that, theoretically, any point in the 

interior of the triangle or on the sides of the triangle satisfied the condition. For 
practical reasons, they excluded any point on the sides of the triangle as possible 
locations of the picnic area and suggested the center point because it is 
equidistant from the roads.  

After having formulated a conjecture, which seemed very plausible in light 
of the accurate measurements provided by GSP, students knew that a proof was 
needed to elevate our conjecture to the rank of a theorem. A student suggested a 
proof based on analytic geometry.   

The proof combining geometry and algebra is one of the most 
straightforward proofs of Viviani’s theorem because knowing basic algebraic 
tools allows constructing the proof almost effortlessly. The proof is as follows:  

First, we place the equilateral triangle ABC as indicated in figure 2. To 
simplify the algebra, use 2s as the length of the side. Thus, vertex B has 
coordinates B(2s, 0) and vertex C has coordinates (s, ). Second, we find 
that the equations of the sides of the triangles are y = 0 ( ), y =  ( ), 
and y =  +  ( ). Using the fact that the distance from point P(h, 
k) to line Ax + By + C = 0 is  we obtain PD + PE + PF =  

k +   +  = k +  +  = . Notice that 
the absolute values are unnecessary because P is an interior point of the 
triangle. 

The inquisitive learner may wonder whether the fact that PD + PE + PF =  
 is significant and whether s has an interesting geometric interpretation. 
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A close examination of figure 2 reveals that s is the length of the altitude of 
the equilateral triangle. Notice that the analytic proof is not only a convincing 
argument that the sum of the distances from an interior point of an equilateral 
triangle to its sides is a constant but also a means to discover new relationships 
(de Villiers, 1990, Hanna, 2000). In this case the proof led students to discover 
that PD + PE + PF is the height of the equilateral triangle.   

One habit of mind that we need to promote among mathematics learners, 
particularly prospective teachers, is the process of searching for multiple 
arguments to justify a claim. Each argument can shed a different insight into the 
connections of mathematical ideas. One of the simplest, more economical and 
more elegant proofs of Viviani involve the use of area:  

Draw segments connecting point P to each of the vertices of the triangle. 
These segments partition the triangle into three smaller triangles as 
indicated in figure 3. Let s be the length of the side of the triangle. On one 
hand, Area(�ABC) = . On the other hand, Area(�ABC) = Area(�ABP) + 

Area(�BCP) + Area(�CAP) =  +  +  = . 

Thus we conclude that  =  or PD + PE + PF = h.  
Notice that the area proof also helps us to discover the fact that the sum of 

distances from an interior point of an equilateral triangle to its sides is the 
measure of its altitude. Both the analytic geometry and area proof fulfill the 
functions of proof as justification, conviction, and discovery. However, the 
argument involving area has more explanatory power. But there are other 
reasons why learners should see more than one proof of a theorem. Winicki-
Landman (1998) argues that students should be exposed to different types of 
proofs so they learn to appreciate the beauty and elegance of proof by 
comparing and contrasting different proofs of the same theorem.  

To model the process of extending mathematical problems, conjectures, and 
theorems, I asked students whether we could extend Viviani’s theorem to other 
geometric figures. Some suggested considering quadrilaterals and polygons. We 
first considered quadrilaterals. Since students wanted to use GSP immediately, I 
asked them to think for what quadrilaterals Viviani’s theorem may hold without 
using the software. Of course, students realized that Viviani’s theorem does not 
hold for general quadrilaterals so we started with the most special of the 
common quadrilaterals: a square. A simple drawing was enough to discover and 
understand that Viviani’s theorem holds for squares (Fig. 4). We formulated our 
theorem as follows:  

Let P be an interior point of a square. The sum of the distances from P to its 
sides is the semi-perimeter of the square.      
We next considered a rectangle and discovered a similar relationship. The 

pattern, however, had to be modified for a rhombus: The sum of the distances 
from an interior point P of a rhombus to its sides is the sum of the distances 
between the parallel sides (Fig. 5). A similar result holds for a parallelogram. 
Notice that in both cases the class reinterpreted the geometric meaning of the 
constant PE + PF + PG + PH since it is not the semi-perimeter of the rhombus. 
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Our next task was to investigate whether Viviani’s theorem could be 
extended to other quadrilaterals. After an unsuccessful search in the realm of 
quadrilaterals, the class turned to regular polygons. We first considered a regular 
pentagon (Fig. 6). As students dragged point P in the interior of the pentagon, 
they confirmed experimentally that the sum of the distances of an interior point 
of a regular pentagon to its sides is a constant.  

Our next task was to provide a proof and discover the geometrical meaning 
of the constant. As we did for equilateral triangles, we constructed segments 
from P to each of the vertices of polygon ABCDE to represent its area in two 
different ways. On one hand, Area(ABCDE) = Area(�ABP) + Area(�BCP) + 
Area(�CDP) + Area(�DEP) + Area(�EAP) = . 

On the other hand, Area(ABCDE) = , where a is the apothem of the regular 
pentagon. Therefore, we conclude that PF + PG + PH + PI + PJ = 5a.  

As hindsight, a student suggested dragging point P to the center of the 
regular pentagon to visualize that PF + PG + PH + PI + PJ equals five times the 
apothem of the regular pentagon (Fig. 8).  

The class then extended and proved the result for a regular n-gon: Let P be 
an interior point of a regular n-gon. The sum of the distances from P to the sides 
of the polygon (S) is a constant and is equal to na, where a is the apothem of the 
polygon.  

Previously we had defined the altitude of a regular polygon with an even 
number of sides as the distance between any pair of parallel sides. For a regular 
polygon with an odd number of sides, we defined its altitude as the distance 
from a vertex to the opposite side. I asked students whether we could represent S 
in terms of h, the altitude. A student quickly replied that if the polygon has an 
even number of sides, then the sum equals to . In spite of our efforts, we were 
not able to find an expression for S in terms of h for regular polygons with an 
odd number of sides.  

At this point the class thought that we had finished extending Viviani’s 
theorem to polygons. The students then were surprised when I asked them 
whether Viviani’s theorem could be extended to other non-regular polygons. 
The class previously had defined and explored parallelogons (polygons whose 
opposite sides are parallel), equilateral polygons, and equiangular polygons so it 
was natural for some students to consider those polygons as potential situations 
to which extend Viviani’s theorem. The class first considered a parallelo-
hexagon (Fig. 9). 

All students were able to see that the sum of the distances from an interior 
point of a parallelo-hexagon to its sides was a constant: the sum of the distances 
between opposite parallel sides, so no GSP measurements were needed to verify 
their claim. The classed then extended this result to parallelo-2n-gons. The class 
next considered an equilateral pentagon (Fig. 10).  

Students were surprised that Viviani’s theorem could be extended to 
equilateral pentagons. To explain why this was the case, one student provided 
the following incomplete argument: Area(ABCDE) = Area(�ABP) + 
Area(�BCP) + Area(�CDP) + Area(�DEP) + Area(EAP) = 
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 = S, where s is the length of the side of the 
equilateral pentagon. The student then said that she was “stuck” because she 
wanted to express Area(ABCDE) in terms of the apothem. I asked the student to 
solve for S in terms of the area of ABCDE (S = ) but she did not 
see that this expression meant that S was a constant. Another student said “Oh, 
since Area(ABCDE) and s are constants, we can conclude that   is 
also a constant.” Next, the class considered an equiangular hexagon (Fig. 11).  

The students realized that an equiangular hexagon was also a parallelo-
hexagon and, thus, Viviani’s theorem held for an equiangular hexagon. The 
class then proposed to investigate the case of an equiangular pentagon.  

Before constructing the GSP configuration, I asked students to predict 
whether Viviani’s theorem held for equiangular polygons. Since an equiangular 
polygon with an odd number of sides does not necessarily have congruent sides 
or parallel sides, some student predicted that Viviani’s theorem did not hold for 
equiangular polygons with an odd number of sides. They were then surprised to 
discover that their prediction was incorrect (Fig. 12).  

The class then took the challenge to explain logically the discovery but 
without success. I suggested to the students to embed the equiangular pentagon 
into a regular pentagon as shown in figure 13.  

A student then visualized the proof immediately and provided an argument 
along the following lines:  

PF + PG + PH + PI + PJ = (PF + PO + PQ + PR + PJ) – (GO + HQ + IR) = 
k, for k a real number, since PF + PO + PQ + PR + PJ and GO + HQ + IR 
are constants, and the difference of two constants is a constant. PF + PO + 
PQ + PR + PJ is a constant because AKLMN is a regular pentagon. GO + 
HQ + IR is a constant because is the sum of the distance between parallel 
sides of the pentagons. The corresponding sides of the two pentagons are 
parallel because their corresponding angles are congruent.  
The class thought that this proof was also simple, economical, and elegant. 

The class continued their Viviani’s adventures in other directions but that is 
another story that should be told another time.   

 
Conclusion 
 
Viviani’s theorem is one of my favorite theorems because it can be proved 

using different strategies and can be extended to a variety of geometric figures. I 
present it to my students every time I teach the geometry course for prospective 
secondary mathematics teachers. Most of them come to appreciate its beauty, 
elegance, and simplicity. Although our extensions are not original, all of us, the 
instructor and the students, experience the thrill of formulating and discovering 
new theorems, at least new to us.  
 
† José N. Contreras, Ph. D., Ball State University, USA 
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Figure 1: Locating the optimal point 
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Figure 2: Diagram for the Analytic proof of Viviani’s theorem 
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Figure 3: Area(�ABC) = Area(�ABP) + Area(�BCP) +Area(�CAP) 
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Figure: 4: Viviani’s theorem holds for squares 
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 Figure 5: PE + PF + PG + PH is a constant for rhombi and 
parallelograms   
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Figure 6: PF + PG + PH + PI + PJ is a constant for an interior point P of a 
regular pentagon 
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Figure 7: Area(ABCDE) = Area(�ABP) + Area(�BCP) + Area(�CDP) + 

Area(�DEP) + Area(�EAP)  
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Figure 8: Visualizing that PF + PG + PH + PI + PJ = 5a 
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Figure 9: S is constant for a parallelo-hexagon when P is an interior point 
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Figure 10: S is constant for an equilateral pentagon when P is an interior 

point 
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Figure 11: S is constant when P is an interior point of equiangular 

hexagon 
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Figure 12: S is constant for an interior point P of an equiangular pentagon 
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Figure 13: Every equiangular pentagon can be embedded into a regular 
pentagon 
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