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Abstract

Let f be a continuous function of x on €2, where Q C RY N>1,isa
bounded, open, convex, connected set. We prove that if f (C) is not the

absolute maximum or absolute minimum value of f in{2, where ¢ € Q isa
7 1 L
given point, then there exists a set S C £ such that f(c) = EJ. f(xX)dx .
s
Introduction

One version of the Mean Value Theorem of integral calculus states that if f is

a continuous function of X on a given compact, connected set V < R N , then

- 1 el -
there exists a point ¢ € V' such thatmjf(x)dx = f(c) (see, e.g., [2]).
v

The question to be considered here is: If f () is the value of a continuous

function f ata given point ¢ € ., where Q C R N N> 1, is a bounded,

open, convex, connected set, then does there exist a set S C € such that
- 1 .
@ = [ i
1513

In this paper, we prove that if f (¢ ) is not the absolute maximum or absolute

minimum value of f in €2, then there exists a set S C £ such that
- 1 oy
F@=—[ fEds.
ST

In previous related work by other researchers, several papers have studied the
converse of the Mean Value Theorem for functions of one variable. Tong and

Braza [4] proved that given a continuous function f :fa,b]— R and given
¢ € (a,b)suchthat ¢ is not an accumulation point of the set{ X € (a,b):
f(x)=f(c)}and c isnot a local extremum point of f , then there exists

(a,B) c (a,b), wherece (a, ), suchthatjﬁf(x)dx:f(c)(,B—a).

In related work on the Mean Value Theorem for differentiable functions F' of
one variable, Tong and Braza [5] and Mortici [3] proved that if F is continuous
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on [ a,b ] and differentiable on ( @, b ), then there exists an interval ( &, ,B )
(a,b)suchthat F () —F (a)=F"(c)( f—a),provided F’ satisfies
certain hypotheses. These hypotheses are that either F "(c)is not a local
extremum value of F’ (x)on(a,b)and c is not an accumulation point of the

set {x€ (a,b). F'(x)= F'(c)},inwhichcasec € (&, ), or
alternatively that F (¢ ) is not a global extremum value of F’(x)on (a,b),
in which case ¢ is not necessarily inside ( &, ,B ). Almeida [1] proved that if
F is continuous on [ @, b | and differentiable on (@, b ), then there exists an
interval (&, ) C (a,b) withce [, ]suchthat F (B)—F (&) =
F’ (¢)( B—a), provided that there exists k, >0 such that
(c—ky,c+ky) c(a,byand F' (c=Kk < F' (¢)< F' (c+ k) forall
ke (0,k,).

We have not seen work related to the converse of the Mean Value Theorem for
integrals of functions of several variables.

A converse of the mean value theorem for integrals

We present the results of this paper in two theorems. The first theorem considers
- 1 -
the existence of a set S < € suchthat f(c¢) = mj f(X)dx .
s

The second theorem concerns conditions under which ¢ € S for the special
case in which § =[a,, b, 1X[a,, b,1X..X [ay, by 1.

We begin by proving the following theorem:

Theorem 1: Let f : Q& — R be a continuous function of X € €, where

Q c RY ,N>1.is a bounded, open, convex, connected set. Let f (¢ ) be the
value of f ata given point ¢ € €.
If there exists an open set A C £ such that f (X)=f (¢ )forall X€ A,

then f(¢)=l Al j f(X)dx .

If there does not exist an open set A C € such that f (X)= f (¢ ) for all

X € A, then we have the following cases:
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Case 1: If f (C ) is not the absolute maximum or absolute minimum value

of f in €, then there exists a set S, € € such that
f@ =S, 1" j F)d .
So

Case 2: If f (C ) is the absolute maximum value of f in £, then there exists a

set S, € Q and a positive constant &  such that

f@ =S, 1" j FE)+e,dx .

Case 3: If f (C ) is the absolute minimum value of f in Q, then there exists a

set §, C € and a positive constant & , such that
F@=S, 1 [ F)-,di

Sz
Proof:

If there exists an open set A C € suchthat f (X)=f (¢ )forall X€ A, it

immediately follows that f(¢) =l Al™ .[f()?)d)? . Therefore, now suppose
A

that there does not exist an open set A C € suchthat f (X)=f (¢ ) forall

XeA.

We have three possible cases to consider:

(1) Case 1 is the case in which f (C) is not the absolute maximum or absolute

minimum value of f in €.

(2) Case 2 is the case in which f (C) is the absolute maximum value
of fin Q.

(3) Case 3 is the case in which f (C) is the absolute minimum value

of fin Q.

Note that we are not assuming that f has an absolute maximum value or

absolute minimum value in €.

We now consider each case separately.

Case 1: Suppose that f (¢ ) is not the absolute (global) maximum or absolute
(global) minimum value of f inQ.Let g (X)= f (X) — f (). Then
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g (¢)=0.Since f (C)isnot the absolute maximum value of f in €2, there
exists a point X, € Q such that g (X;)>0. Since g (X) is continuous, there

exists an open ball B, = B (X,, 9,) of radius 0, about the point X,, such that

B, © Q and such that g (¥)>0for X€ B,.

Since f (C ) is not the absolute minimum value of f in €2, there exists a point
X, € Q suchthat g (X,)<0.Since g (X) is continuous, there exists an
open ball B,=B (X,.0,) of radius 0, about the point X, , such that B, < Q
and such that g (X)<O0 for X € B,.

Since E1 c Q and Ez < Q, and since €2 is a connected open set in R N it
follows that there exists a connected open set U < € suchthat B, < U ,
and such that B, C U , and such that the distance 0, from the boundary of U

to the boundary of £ is positive, so that U c . Therefore B,=B (X,d,)
c Q forany X€ U. Let 9, =min{d,, d,, 9, }. We now define

1
G(xX)=——— |g(3¥)dy, where Xx € U.
|B(x,84)|B().L)4)

It follows that G is a continuous function of X on U ,and G (X,)<0 and
G (X,)>0,since g(y)<O0 for y€ B(X,,d,)C B, and g (y)>0for
y e B(X,,0,)C B,.

Since G is continuous on the connected set U , and G (X,)<0 and

G (X,)>0, where X, € U and where X, € U , then by the Intermediate
Value Theorem (see, e.g., [2]) there exists a point 553 € U such that

G (X;)=0. Therefore

1
0=G (X))=—7—=— |8X)dX=—F—— | f(X)—f(c)dx .
’ IB(x3,84)IB().CL4) |B(x3,a4)|3(ia4)

Re-arranging terms yields
- 1 o
f@=——e— [fd.
| B(x3 ’84) | B(%3.94)
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We define S,= B (X,,d,) and the proof for Case 1 is complete.

Case 2: Suppose that f (C ) is the absolute maximum value of f in Q. Let
B, =B (¢, d,) C Q be the open ball of radius d,, about the point ¢ such
that d,, is the distance from € to the boundary of Q. Let B,=B (¢, 9,) be

the open ball of radius d, < 1/2 d,, about the point ¢ . Note that El cQ.

Let g(X)= f(X)—f(C). Then g(¢)=0,and g (X)<0 for

Xe Q. Let & =—§, min).cegl g (X), where 0< €, <1. Note that & >0
(since otherwise it would follow that min __; g ( X)=0=max _ 5 8 ( X)=
g (¢ ), which implies that g (X)=0in l_?l andso f (X)= f (C)onthe
set A= B, but this contradicts the assumption made at the start of the proof of
this theorem that such an open set A does not exist). Also note that & can be
arbitrarily small since £, can be arbitrarily small. And since g is continuous
on B, , it follows that there exists a point X, € B, such that g (X,)=

min g g (X)=—&/&.

XE

We have — &/ &, =min __p g(X)=g(X)<g(xX)<g(c)=

max .z g(x)=0 for xe B,.

Now let £ (X)=g (X) +€1.Itfollowsthat(1—1/80)81=minfegl h(x) =

h(x)< h(X) < h(5)=max).cegl h(x)=¢g for X€ B,. And

(1-1/&,)€ <0, since 0<€,<1 and & >0.

Since £ is continuous on €, and since /1 (X,)<0 and A (c)>0, where
)?IE l_?l and C € El, it follows that exists a radius az< al such that
h(xX)<0 for X€ B (X,, 9,), and such that & (X)>0 for

X€ B(c¢.0,).

We now define H (X) =+ jh(})d} , where X € El Note that
| B(X,0,)]l Bay)

Journal of Mathematical Sciences & Mathematics Education Vol. 9 No. 2 5



B(X,0,)C B(¢,0,) CcQ for X€ B,.

It follows that H is a continuous function of X on l_?l ,and H ()?l)< 0 and
H (¢)>0,since h(y)<O0 for y€ B(X,,0,)and h(y)>0 for
y€ B(¢,d,).

Since H is a continuous function of X on the connected set El , and
H (%)<0 and H(¢)>0, where X, € B, and where ¢ € B, , then by the
Intermediate Value Theorem there exists a point X, € §1 such that
H (Xx,)=0. Therefore
1 1

= [h@®di-———— [fE-F@) +edx.
|B(x2’az)|3(};[,az) IB(XZ’BZ)IB(J,%) 1

Re-arranging terms yields

I B
f(©) RV TENERY B(fz,az)lg(ia{)(x)Jrgldx .

We define S, = B (X,,0,) and the proof for Case 2 is complete.

Case 3:

Suppose that f (€ ) is the absolute minimum value of f in €. Then
f(X)—f ()20 for xe Q.Let v(X)=—f (X). And so
V(X)=v(¢)<LO0 for X € Q,and v(C) is the absolute maximum value of
v in €. From the proof of Case 2, it follows that there exists a point 553 e Q,
and a radius 05, and a positive constant &, such that

1

v(c)=——— |v(X)+&,dxX .

IB(x3,83)IB().CLS) ’

Since v (X)= — f (X), multiplying this equation by —1 yields
- 1 - ~

@)= [f(D)-edx.

| B(X;,9,) 1525,

We define S,= B (X,,0,) and the proof for Case 3 is complete.
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This completes the proof of Theorem 1.

We now prove the following theorem:

Theorem 2: Let f: & — R be a continuous function of X € €, where

Q cRY , N> 1, is a bounded, open, convex, connected set. Let f (C ) be the
value of f at a given point ¢ € Q.

If there exists an open set A C € such that f (X)=f (¢ )forall X€ A,

3 1 -
where G € A then f(€) —mjAf(x)dx .

If there does not exist an open set A < € such that f (X)= f (¢ ) for all
X € A, where ¢ € A, then we have the following cases:

Case 1: Suppose the spatial dimension N=1.

If f (c)is not the absolute maximum or absolute minimum value of f in €,

then there exist @, , b, in€ such that @, <c <b, and

Fle)=—1

b, —a,
v, <c<z and G(y,).G(z,) have the same signor G(y,) =G(z,) =0,

where G(f) = j F(x)— f(e)dx.

b
.[ 1f()c)d)c if and only if there exist y,, z, in £ such that
ap

Case 2: Suppose the spatial dimension N 2 2.

If f (C ) is not the absolute maximum or absolute minimum value of f in

then there exists a set S C €, where ¢ =(¢,,C,,...,Cy)E S, and where
_ 1 .
S =[a,, b1X [a,, b,]1X..X [ay, by], suchthatf(C)ImLf(x)dx

if for j=1,2,...,N, there exist Vi Z; such that Y; < C; < Z; and

Gj(yj),Gj(zj) have the same sign or Gj(yj):Gj(Zj) =0, where
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Gj(t)=£jj::l j”j" F X Xy X, oy ) = £ (@), .,

where a,, bl. are determined iteratively for each .

Proof of Theorem 2:
If there exists an open set A C £ such that f (X)=f (¢ )forall X€ A,

_ - 1 .
where ¢ € A, it immediately follows that f(c) = mJ-A f(x)dx .

Therefore, now suppose that there does not exist an open set A C £ such that
f(X)=f(c)forall X€ A, where C € A.

We consider the cases in which the spatial dimension N=1 and in
which N 22 separately.

Case 1: First let N=1.

Suppose that f () is not the absolute maximum or absolute minimum value of
finQ.Let g(x)=f(x) —f(c).Then g (c)=0,and g (c)is not the

absolute maximum or absolute minimum value of g in 2. We define
G(t)=| g0dx = f(x)= f(c)dx. where t€ Q =(a,b). Note that
G(c)=0.

We begin by proving that there exist y,, z, in Q such that y, <c¢<Zz and
G(y,).G(z,) have the same sign (i.e., both are positive or both are negative
numbers) or G(y,) = G(z,) =0 if and only if there exist a,, b, in £ such
that a, <c<b, and G(a,)=G(b)).

Therefore, suppose that there exist y,, z, in £ such that y, <c¢ <z, and
G(y,).G(z,) have the same signor G(y,) = G(z,) =0. If

G(y,) =G(z,;) =0 then we are done. The desired result that

G(a,) =G(b,) holds with a, =y, and b, = z,.
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Next, suppose that G(y,),G(z,) have the same sign. If G(y,) = G(z,) then
we are done. The desired result that G(a,) = G(b,) holds with a, =y, and
b =z.

Next suppose that G(y,),G(z,) have the same sign and G(y,) # G(z,).
First, assume that 0 < G(y,) < G(z,) . Recall that G(c) =0 and that

¥, < ¢ < z,. Therefore, by the continuity of G(#) and the Intermediate Value
Theorem, it follows that there exists z, in Q suchthat ¢ < 7, <Z, and
G(z,)= G(y,) . The desired result that G(a,) = G(b,) holds with
a,=yand b, =z,.

Similarly, if 0<G(z;) <G(y,), itfollows that there exists y, in £ such
that y, <y, <c and G(y,)= G(z,) . The desired result that
G(a,) =G(b,) holds witha, =y, and b, = z,.

Andif G(z;) <G(y,) <0, it follows that there exists Z, in £ such that
¢<z;<z and G(z;)= G(y,) . The desired result that G(a,) =G(b,)
holds witha, =y, and b, = z;.

Finally, if that G(y,) < G(z;) <0, it follows that there exists y, in £
such that y, <y, <c andG(y;) = G(z;) . The desired result that
G(a,)=G(b,) holds with a, = y, and b, = z,.

Conversely, suppose that there exista, , b, in € such that g, <c <b, and
G(a,) =G(b,) .Then G(a,) =G(b,) =00rG(a,) =G(b,) # 0, in which
case G(a,),G(b,) have the same sign. Therefore, there exist y,, z, in £
such that y, <c <z, and G(y,),G(z,) have the same sign or
G(y,)=G(z,) =0, where we define y, =q, and z, =b,.

Therefore, there exist y,, z, in £ suchthat y, <c¢ <z, and
G(y,).G(z,) have the same sign or G(y,) =G(z,) =0 if and only if
there exist a,, b, in  suchthat @, <c<b, and G(a,)=G(b,).
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Since G(t) = J.t g(x)dx = .r f(x)— f(c)dx, it immediately follows that
1

bl -4,

G(a,)=G(b,) ifand onlyif f(c) = [ " F(0)dx.

Therefore, there exist y,, z; in £ suchthat y, <c¢ <z, and
G(y,).G(z,) have the same sign or G(y,) =G(z,;) =0 if and only if there

! j” F(x)dx.

bl -4,

exist @,, b, in & suchthat @, <c<b, and f(c)=

This completes the proof of Case 1 of the theorem.
Case 2: Next, suppose N =2,

Suppose that f (¢ ) is not the absolute maximum or absolute minimum value of
fin Q.Let g(X)=f(X)— f(¢).Then g(¢)=0,and g (C)is not the

absolute maximum or absolute minimum value of g in Q.
We next prove there exists a set S < ., where ¢ =(¢,,C,,...,Cy) € S and
where S =1[a,, b 1X [a,, b,]1X..X [a,, by ], such that
o |1 e e :
f(c)= —L f(X)dx ifforj=12,...,N, there exist Y Z; such that

S
y;<c;<z;and Gj (¥ Gj (z;) have the same sign or

Gj(yj):Gj(Zj):O,where

toebiy by b

G;(t)= J. J. .[ J. 8(X) Xy sy X, C ey )X dXy . dX
cpda; da;, a

To prove this result, we will repeatedly apply the proof used in Case 1 for N=1.

1
We begin by defining G, (t) = I 8(x,,cy,...0y)dx,
B

for ¢ such that (¢,c,,...,c, ) € Q. Recall that (c,,C,,...,cy) € Q. Also,
recall that Q is a bounded, open, convex, connected set, so that
(x,,C55....C ) € L on the interval of integration. And G,(¢,)=0.
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By the proof from Case 1 for N=1, if there exist y,, Z, such that
v, <c¢, <z, and G,(y,), G, (z,) have the same sign or
G,(y,)= G, (z,)=0, then there exist a,, b, suchthat a, <c¢, <b, and

b
G, (a,)= G, (b)). It immediately follows that J- lg()c1 1Cosenily )dx, = 0.
a

t b
Next, we define G, (1) = I I g(x,, Xy, CyenCy )X, dX,
€ ¥4

for ¢ such that (x,,t,¢5,...,cy )€ Q for a, <x, <b,.Note that
(X,,CyseeesCy) € & for a; < x; < b, by the previous step. Also, recall that
€ is a bounded, open, convex, connected set, so that (X,,X,,C3,...,Cy ) € L

on the intervals of integration. And G,(c,)=0.

By the proof from Case 1 for N=1, if there exist y,, Z, such that

Y, <c¢, <z, and G,(y,), G, (Z,) have the same sign or
G,(y,)=G, (z,)=0, then there exist a,, b, suchthat a, <c, <b,
and G, (a,)= G, (b,). It immediately follows that

by b
v[l -[,l g(-x17-x2,C3,...cN )dxlde = 0'

Next, for j=3,...,.N we define
toebi b, (b

G, (t)= J. J. .[ J. 8(X| Xy sy X, C €y )X dX, X
cjda; daj;, a

for ¢ such that (xl’x2""’xj—1’t’c LCy)EQ for a,<x;<bh,,

o

i=12,...,j—1. Note that (xl,xz,...,xj_l,cj,c .Cy)€E Q for

JISEIE
a,<x;, <b,, i=12,..,j—1 by the previous steps. Also, recall that
Q is a bounded, open, convex, connected set, so that

(X, Xy s X X, .,Cy ) € L on the intervals of integration. And

e

Gj(cj):0.

o

By the proof from Case 1 for N=1, if there exist ¥ e such that

y; <c¢;<z; and Gj(yj), Gj (z;) have the same sign or
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G, (y,)=G; (z;)=0, then there exist a;, b, suchthat a; <c; <b; and
G ( a;)= G, (bi) . It immediately follows that

S dx,dx,...dx, =0
J. .[ J. J. 8(X) Xy e X4 C sy )X, dX, dx; = 0.
ajda; da;, a

When j =N, we obtain
bN 1 bN—Z b]

I I I I 8(x,, Xy 0, Xy )dx,dx,...dx,, =0.
AN-1 7 ¥AN-2 aq

Since g(X)=f(X)— f(¢), where X= (X,,X,,..., X ), re-arranging terms in
the above identity yields

G — j j” j”j” F (X Xy s X ),y X,

H(b -a,

Therefore, the set S = [al,b X [a,, b XX [ay, b ] satisfies

f(c )—mj- f(X)dx and ¢=(c,,c,,....Cy)E S.

This completes the proof of Theorem 2.
T Diane Denny, Ph.D., Texas A&M University-Corpus Christi, USA
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