A converse of the mean value theorem for integrals of functions of one or more variables

Diane Denny, Ph.D. †

Abstract

Let f be a continuous function of \mathbf{x} on Ω , where $\Omega \subset \mathbb{R}^N$, $N \ge 1$, is a bounded, open, convex, connected set. We prove that if $f(\vec{c})$ is not the absolute maximum or absolute minimum value of f in Ω , where $\vec{c} \in \Omega$ is a given point, then there exists a set $S \subset \Omega$ such that $f(\vec{c}) = \frac{1}{|S|} \int_{S} f(\vec{x}) d\vec{x}$. Introduction

One version of the Mean Value Theorem of integral calculus states that if f is a continuous function of \vec{x} on a given compact, connected set $V \subset \mathbb{R}^N$, then there exists a point $\vec{c} \in V$ such that $\frac{1}{|V|} \int_{V} f(\vec{x}) d\vec{x} = f(\vec{c})$ (see, e.g., [2]). The question to be considered here is: If $f(\vec{c})$ is the value of a continuous function f at a given point $\vec{c} \in \Omega$, where $\Omega \subset \mathbb{R}^N$, $N \ge 1$, is a bounded, open, convex, connected set, then does there exist a set $S \subset \Omega$ such that

$$f(\vec{c}) = \frac{1}{|S|} \int_{S} f(\vec{x}) d\vec{x} ?$$

In this paper, we prove that if $f(\vec{c})$ is not the absolute maximum or absolute minimum value of f in Ω , then there exists a set $S \subset \Omega$ such that

$$f(\vec{c}) = \frac{1}{|S|} \int_{S} f(\vec{x}) d\vec{x} \, .$$

In previous related work by other researchers, several papers have studied the converse of the Mean Value Theorem for functions of one variable. Tong and Braza [4] proved that given a continuous function $f : [a, b] \to R$ and given $c \in (a, b)$ such that c is not an accumulation point of the set{ $x \in (a, b)$: f(x) = f(c)} and c is not a local extremum point of f, then there exists $(\alpha, \beta) \subset (a, b)$, where $c \in (\alpha, \beta)$, such that $\int_{\alpha}^{\beta} f(x) dx = f(c) (\beta - \alpha)$.

In related work on the Mean Value Theorem for differentiable functions F of one variable, Tong and Braza [5] and Mortici [3] proved that if F is continuous

on [a,b] and differentiable on (a,b), then there exists an interval $(\alpha,\beta) \subset (a,b)$ such that $F(\beta) - F(\alpha) = F'(c)(\beta - \alpha)$, provided F' satisfies certain hypotheses. These hypotheses are that either F'(c) is not a local extremum value of F'(x) on (a,b) and c is not an accumulation point of the set $\{x \in (a,b): F'(x) = F'(c)\}$, in which case $c \in (\alpha,\beta)$, or alternatively that F'(c) is not a global extremum value of F'(x) on (a,b), in which case c is not necessarily inside (α,β) . Almeida [1] proved that if F is continuous on [a,b] and differentiable on (a,b), then there exists an interval $(\alpha,\beta) \subset (a,b)$ with $c \in [\alpha,\beta]$ such that $F(\beta) - F(\alpha) = F'(c)(\beta - \alpha)$, provided that there exists $k_0 > 0$ such that $(c - k_0, c + k_0) \subset (a,b)$ and $F'(c - k) \leq F'(c) \leq F'(c + k)$ for all $k \in (0,k_0)$.

We have not seen work related to the converse of the Mean Value Theorem for integrals of functions of several variables.

A converse of the mean value theorem for integrals

We present the results of this paper in two theorems. The first theorem considers the existence of a set $S \subset \Omega$ such that $f(\vec{c}) = \frac{1}{|S|} \int_{S} f(\vec{x}) d\vec{x}$.

The second theorem concerns conditions under which $\vec{c} \in S$ for the special case in which $S = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_N, b_N]$.

We begin by proving the following theorem:

Theorem 1: Let $f : \Omega \to R$ be a continuous function of $\vec{x} \in \Omega$, where $\Omega \subset R^N$, $N \ge 1$, is a bounded, open, convex, connected set. Let $f(\vec{c})$ be the value of f at a given point $\vec{c} \in \Omega$. If there exists an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$,

then $f(\vec{c}) = |A|^{-1} \int_{A} f(\vec{x}) d\vec{x}$.

If there does not exist an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$, then we have the following cases:

Case 1: If $f(\vec{c})$ is not the absolute maximum or absolute minimum value of f in Ω , then there exists a set $S_0 \subset \Omega$ such that

$$f(\vec{c}) = |S_0|^{-1} \int_{S_0} f(\vec{x}) d\vec{x}$$

Case 2: If $f(\vec{c})$ is the absolute maximum value of f in Ω , then there exists a set $S_1 \subset \Omega$ and a positive constant ε_1 such that

$$f(\vec{c}) = |S_1|^{-1} \iint_{S_1} f(\vec{x}) + \varepsilon_1 d\vec{x}$$

Case 3: If $f(\vec{c})$ is the absolute minimum value of f in Ω , then there exists a set $S_2 \subset \Omega$ and a positive constant ε_2 such that

$$f(\vec{c}) = |S_2|^{-1} \int_{S_2} f(\vec{x}) - \varepsilon_2 d\vec{x} \cdot \varepsilon = \varepsilon$$

Proof:

If there exists an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$, it immediately follows that $f(\vec{c}) = |A|^{-1} \int_{A} f(\vec{x}) d\vec{x}$. Therefore, now suppose that there does not exist an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$.

We have three possible cases to consider:

(1) Case 1 is the case in which $f(\vec{c})$ is not the absolute maximum or absolute minimum value of f in Ω .

(2) Case 2 is the case in which $f(\vec{c})$ is the absolute maximum value of f in Ω .

(3) Case 3 is the case in which $f(\vec{c})$ is the absolute minimum value of f in Ω .

Note that we are not assuming that f has an absolute maximum value or absolute minimum value in Ω .

We now consider each case separately.

Case 1: Suppose that $f(\vec{c})$ is not the absolute (global) maximum or absolute (global) minimum value of f in Ω . Let $g(\vec{x}) = f(\vec{x}) - f(\vec{c})$. Then

 $g(\vec{c}) = 0$. Since $f(\vec{c})$ is not the absolute maximum value of f in Ω , there exists a point $\vec{x}_1 \in \Omega$ such that $g(\vec{x}_1) > 0$. Since $g(\vec{x})$ is continuous, there exists an open ball $B_1 = B(\vec{x}_1, \partial_1)$ of radius ∂_1 about the point \vec{x}_1 , such that $\overline{B}_1 \subset \Omega$ and such that $g(\vec{x}) > 0$ for $\vec{x} \in B_1$.

Since $f(\vec{c})$ is not the absolute minimum value of f in Ω , there exists a point $\vec{x}_2 \in \Omega$ such that $g(\vec{x}_2) < 0$. Since $g(\vec{x})$ is continuous, there exists an open ball $B_2 = B(\vec{x}_2, \partial_2)$ of radius ∂_2 about the point \vec{x}_2 , such that $\overline{B}_2 \subset \Omega$ and such that $g(\vec{x}) < 0$ for $\vec{x} \in B_2$.

Since $\overline{B}_1 \subset \Omega$ and $\overline{B}_2 \subset \Omega$, and since Ω is a connected open set in \mathbb{R}^N , it follows that there exists a connected open set $U \subset \Omega$ such that $B_1 \subset U$, and such that $B_2 \subset U$, and such that the distance ∂_3 from the boundary of Uto the boundary of Ω is positive, so that $\overline{U} \subset \Omega$. Therefore $B_3 = B(\overline{x}, \partial_3)$ $\subset \Omega$ for any $\overline{x} \in U$. Let $\partial_4 = \min\{\partial_1, \partial_2, \partial_3\}$. We now define

$$G(\vec{x}) = \frac{1}{|B(\vec{x},\partial_4)|} \int_{B(\vec{x},\partial_4)} g(\vec{y}) d\vec{y} , \text{ where } \vec{x} \in U$$

It follows that *G* is a continuous function of \vec{x} on *U*, and $G(\vec{x}_2) < 0$ and $G(\vec{x}_1) > 0$, since $g(\vec{y}) < 0$ for $\vec{y} \in B(\vec{x}_2, \partial_4) \subset B_2$ and $g(\vec{y}) > 0$ for $\vec{y} \in B(\vec{x}_1, \partial_4) \subset B_1$.

Since G is continuous on the connected set U, and $G(\vec{x}_2) < 0$ and $G(\vec{x}_1) > 0$, where $\vec{x}_1 \in U$ and where $\vec{x}_2 \in U$, then by the Intermediate Value Theorem (see, e.g., [2]) there exists a point $\vec{x}_3 \in U$ such that

 $G(\vec{x}_3) = 0$. Therefore

$$0 = G(\vec{x}_3) = \frac{1}{|B(\vec{x}_3,\partial_4)|} \int_{B(\vec{x}_3,\partial_4)} g(\vec{x}) d\vec{x} = \frac{1}{|B(\vec{x}_3,\partial_4)|} \int_{B(\vec{x}_3,\partial_4)} f(\vec{x}) - f(\vec{c}) d\vec{x} .$$

Re-arranging terms yields

$$f(\vec{c}) = \frac{1}{|B(\vec{x}_3, \partial_4)|} \int_{B(\vec{x}_3, \partial_4)} f(\vec{x}) d\vec{x} .$$

We define $S_0 = B(\vec{x}_3, \partial_4)$ and the proof for Case 1 is complete.

Case 2: Suppose that $f(\vec{c})$ is the absolute maximum value of f in Ω . Let $B_0 = B(\vec{c}, \partial_0) \subset \Omega$ be the open ball of radius ∂_0 about the point \vec{c} such that ∂_0 is the distance from \vec{c} to the boundary of Ω . Let $B_1 = B(\vec{c}, \partial_1)$ be the open ball of radius $\partial_1 < 1/2 \partial_0$ about the point \vec{c} . Note that $\overline{B_1} \subset \Omega$.

Let $g(\vec{x}) = f(\vec{x}) - f(\vec{c})$. Then $g(\vec{c}) = 0$, and $g(\vec{x}) \le 0$ for $\vec{x} \in \Omega$. Let $\mathcal{E}_1 = -\mathcal{E}_0 \min_{\vec{x} \in \overline{B}_1} g(\vec{x})$, where $0 < \mathcal{E}_0 < 1$. Note that $\mathcal{E}_1 > 0$ (since otherwise it would follow that $\min_{\vec{x} \in \overline{B}_1} g(\vec{x}) = 0 = \max_{\vec{x} \in \overline{B}_1} g(\vec{x}) =$ $g(\vec{c})$, which implies that $g(\vec{x}) = 0$ in \overline{B}_1 and so $f(\vec{x}) = f(\vec{c})$ on the set $A = B_1$, but this contradicts the assumption made at the start of the proof of this theorem that such an open set A does not exist). Also note that \mathcal{E}_1 can be arbitrarily small since \mathcal{E}_0 can be arbitrarily small. And since g is continuous on \overline{B}_1 , it follows that there exists a point $\vec{x}_1 \in \overline{B}_1$ such that $g(\vec{x}_1) =$ $\min_{\vec{x} \in \overline{B}_1} g(\vec{x}) = -\mathcal{E}_1/\mathcal{E}_0$.

We have $-\mathcal{E}_1/\mathcal{E}_0 = \min_{\vec{x}\in\overline{B_1}} g(\vec{x}) = g(\vec{x}_1) \le g(\vec{x}) \le g(\vec{c}) = \max_{\vec{x}\in\overline{B_1}} g(\vec{x}) = 0$ for $\vec{x}\in\overline{B_1}$.

Now let $h(\vec{x}) = g(\vec{x}) + \mathcal{E}_1$. It follows that $(1 - 1/\mathcal{E}_0)\mathcal{E}_1 = \min_{\vec{x} \in \overline{B}_1} h(\vec{x}) = h(\vec{x}_1) \le h(\vec{x}) \le h(\vec{c}) = \max_{\vec{x} \in \overline{B}_1} h(\vec{x}) = \mathcal{E}_1$ for $\vec{x} \in \overline{B}_1$. And $(1 - 1/\mathcal{E}_0)\mathcal{E}_1 < 0$, since $0 < \mathcal{E}_0 < 1$ and $\mathcal{E}_1 > 0$.

Since *h* is continuous on Ω , and since $h(\vec{x}_1) < 0$ and $h(\vec{c}) > 0$, where $\vec{x}_1 \in \overline{B}_1$ and $\vec{c} \in \overline{B}_1$, it follows that exists a radius $\partial_2 < \partial_1$ such that $h(\vec{x}) < 0$ for $\vec{x} \in B(\vec{x}_1, \partial_2)$, and such that $h(\vec{x}) > 0$ for $\vec{x} \in B(\vec{c}, \partial_2)$.

We now define $H(\vec{x}) = \frac{1}{|B(\vec{x},\partial_2)|} \int_{B(\vec{x},\partial_2)} h(\vec{y}) d\vec{y}$, where $\vec{x} \in \overline{B}_1$. Note that

$$B(\vec{x}, \partial_2) \subset B(\vec{c}, \partial_0) \subset \Omega \quad \text{for } \vec{x} \in \overline{B}_1.$$

It follows that *H* is a continuous function of \vec{x} on \overline{B}_1 , and $H(\vec{x}_1) < 0$ and $H(\vec{c}) > 0$, since $h(\vec{y}) < 0$ for $\vec{y} \in B(\vec{x}_1, \partial_2)$ and $h(\vec{y}) > 0$ for $\vec{y} \in B(\vec{c}, \partial_2)$.

Since *H* is a continuous function of \vec{x} on the connected set \overline{B}_1 , and $H(\vec{x}_1) < 0$ and $H(\vec{c}) > 0$, where $\vec{x}_1 \in \overline{B}_1$ and where $\vec{c} \in \overline{B}_1$, then by the Intermediate Value Theorem there exists a point $\vec{x}_2 \in \overline{B}_1$ such that $H(\vec{x}_2) = 0$. Therefore $0 = \frac{1}{|B(\vec{x}_2, \partial_2)|} \int_{B(\vec{x}_2, \partial_2)} h(\vec{x}) d\vec{x} = \frac{1}{|B(\vec{x}_2, \partial_2)|} \int_{B(\vec{x}_2, \partial_2)} f(\vec{x}) - f(\vec{c}) + \varepsilon_1 d\vec{x}$. Re-arranging terms yields

$$f(\vec{c}) = \frac{1}{|B(\vec{x}_2, \partial_2)|} \int_{B(\vec{x}_2, \partial_2)} f(\vec{x}) + \mathcal{E}_1 d\vec{x}$$

We define $S_1 = B(\vec{x}_2, \partial_2)$ and the proof for Case 2 is complete.

Case 3:

Suppose that $f(\vec{c})$ is the absolute minimum value of f in Ω . Then $f(\vec{x}) - f(\vec{c}) \ge 0$ for $\vec{x} \in \Omega$. Let $v(\vec{x}) = -f(\vec{x})$. And so $v(\vec{x}) - v(\vec{c}) \le 0$ for $\vec{x} \in \Omega$, and $v(\vec{c})$ is the absolute maximum value of v in Ω . From the proof of Case 2, it follows that there exists a point $\vec{x}_3 \in \Omega$, and a radius ∂_3 , and a positive constant \mathcal{E}_2 such that

$$v(\vec{c}) = \frac{1}{|B(\vec{x}_3, \partial_3)|} \int_{B(\vec{x}_3, \partial_3)} v(\vec{x}) + \mathcal{E}_2 d\vec{x} .$$

Since $v(\vec{x}) = -f(\vec{x})$, multiplying this equation by -1 yields

$$f(\vec{c}) = \frac{1}{|B(\vec{x}_3, \partial_3)|} \int_{B(\vec{x}_3, \partial_3)} f(\vec{x}) - \mathcal{E}_2 d\vec{x}$$

We define $S_2 = B(\vec{x}_3, \partial_3)$ and the proof for Case 3 is complete.

This completes the proof of Theorem 1.

We now prove the following theorem:

Theorem 2: Let $f: \Omega \to R$ be a continuous function of $\vec{x} \in \Omega$, where $\Omega \subset R^N$, $N \ge 1$, is a bounded, open, convex, connected set. Let $f(\vec{c})$ be the value of f at a given point $\vec{c} \in \Omega$.

If there exists an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$,

where
$$\vec{c} \in A$$
, then $f(\vec{c}) = \frac{1}{|A|} \int_{A} f(\vec{x}) d\vec{x}$.

If there does not exist an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$, where $\vec{c} \in A$, then we have the following cases:

Case 1: Suppose the spatial dimension N=1.

If f(c) is not the absolute maximum or absolute minimum value of f in Ω , then there exist a_1 , b_1 in Ω such that $a_1 < c < b_1$ and

$$f(c) = \frac{1}{b_1 - a_1} \int_{a_1}^{b_1} f(x) dx \text{ if and only if there exist } y_1, z_1 \text{ in } \Omega \text{ such that}$$

$$y_1 < c < z_1 \text{ and } G(y_1), G(z_1) \text{ have the same sign or } G(y_1) = G(z_1) = 0,$$

where $G(t) = \int_{c}^{t} f(x) - f(c) dx.$

Case 2: Suppose the spatial dimension $N \ge 2$.

If $f(\vec{c})$ is not the absolute maximum or absolute minimum value of f in Ω , then there exists a set $S \subset \Omega$, where $\vec{c} = (c_1, c_2, ..., c_N) \in S$, and where $S = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_N, b_N]$, such that $f(\vec{c}) = \frac{1}{|S|} \int_S f(\vec{x}) d\vec{x}$ if for j=1,2,...,N, there exist y_j, z_j such that $y_j < c_j < z_j$ and $G_j(y_j), G_j(z_j)$ have the same sign or $G_j(y_j) = G_j(z_j) = 0$, where

$$G_{j}(t) = \int_{c_{j}}^{t} \int_{a_{j-1}}^{b_{j-1}} \int_{a_{j-2}}^{b_{j-2}} \dots \int_{a_{1}}^{b_{1}} f(x_{1}, x_{2}, \dots, x_{j}, c_{j+1}, \dots, c_{N}) - f(\vec{c}) dx_{1} dx_{2} \dots dx_{j}$$

where a_i , b_i are determined iteratively for each i.

Proof of Theorem 2:

If there exists an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$, where $\vec{c} \in A$, it immediately follows that $f(\vec{c}) = \frac{1}{|A|} \int_A f(\vec{x}) d\vec{x}$.

Therefore, now suppose that there does not exist an open set $A \subset \Omega$ such that $f(\vec{x}) = f(\vec{c})$ for all $\vec{x} \in A$, where $\vec{c} \in A$.

We consider the cases in which the spatial dimension N=1 and in which N \geq 2 separately.

Suppose that f(c) is not the absolute maximum or absolute minimum value of $f \text{ in } \Omega$. Let g(x) = f(x) - f(c). Then g(c) = 0, and g(c) is not the absolute maximum or absolute minimum value of $g \text{ in } \Omega$. We define

$$G(t) = \int_{c}^{t} g(x)dx = \int_{c}^{t} f(x) - f(c)dx, \text{ where } t \in \Omega = (a,b). \text{ Note that}$$
$$G(c) = 0.$$

We begin by proving that there exist y_1 , z_1 in Ω such that $y_1 < c < z_1$ and $G(y_1)$, $G(z_1)$ have the same sign (i.e., both are positive or both are negative numbers) or $G(y_1) = G(z_1) = 0$ if and only if there exist a_1 , b_1 in Ω such that $a_1 < c < b_1$ and $G(a_1) = G(b_1)$.

Therefore, suppose that there exist y_1 , z_1 in Ω such that $y_1 < c < z_1$ and $G(y_1)$, $G(z_1)$ have the same sign or $G(y_1) = G(z_1) = 0$. If $G(y_1) = G(z_1) = 0$ then we are done. The desired result that $G(a_1) = G(b_1)$ holds with $a_1 = y_1$ and $b_1 = z_1$.

Next, suppose that $G(y_1)$, $G(z_1)$ have the same sign. If $G(y_1) = G(z_1)$ then we are done. The desired result that $G(a_1) = G(b_1)$ holds with $a_1 = y_1$ and $b_1 = z_1$.

Next suppose that $G(y_1)$, $G(z_1)$ have the same sign and $G(y_1) \neq G(z_1)$. First, assume that $0 < G(y_1) < G(z_1)$. Recall that G(c) = 0 and that $y_1 < c < z_1$. Therefore, by the continuity of G(t) and the Intermediate Value Theorem, it follows that there exists z_2 in Ω such that $c < z_2 < z_1$ and $G(z_2) = G(y_1)$. The desired result that $G(a_1) = G(b_1)$ holds with $a_1 = y_1$ and $b_1 = z_2$.

Similarly, if $0 < G(z_1) < G(y_1)$, it follows that there exists y_2 in Ω such that $y_1 < y_2 < c$ and $G(y_2) = G(z_1)$. The desired result that $G(a_1) = G(b_1)$ holds with $a_1 = y_2$ and $b_1 = z_1$.

And if $G(z_1) < G(y_1) < 0$, it follows that there exists z_3 in Ω such that $c < z_3 < z_1$ and $G(z_3) = G(y_1)$. The desired result that $G(a_1) = G(b_1)$ holds with $a_1 = y_1$ and $b_1 = z_3$.

Finally, if that $G(y_1) < G(z_1) < 0$, it follows that there exists y_3 in Ω such that $y_1 < y_3 < c$ and $G(y_3) = G(z_1)$. The desired result that $G(a_1) = G(b_1)$ holds with $a_1 = y_3$ and $b_1 = z_1$.

Conversely, suppose that there exist a_1 , b_1 in Ω such that $a_1 < c < b_1$ and $G(a_1) = G(b_1)$. Then $G(a_1) = G(b_1) = 0$ or $G(a_1) = G(b_1) \neq 0$, in which case $G(a_1), G(b_1)$ have the same sign. Therefore, there exist y_1, z_1 in Ω such that $y_1 < c < z_1$ and $G(y_1), G(z_1)$ have the same sign or $G(y_1) = G(z_1) = 0$, where we define $y_1 = a_1$ and $z_1 = b_1$.

Therefore, there exist y_1 , z_1 in Ω such that $y_1 < c < z_1$ and $G(y_1), G(z_1)$ have the same sign or $G(y_1) = G(z_1) = 0$ if and only if there exist a_1, b_1 in Ω such that $a_1 < c < b_1$ and $G(a_1) = G(b_1)$.

Since $G(t) = \int_{c}^{t} g(x)dx = \int_{c}^{t} f(x) - f(c)dx$, it immediately follows that

$$G(a_1) = G(b_1)$$
 if and only if $f(c) = \frac{1}{b_1 - a_1} \int_{a_1}^{b_1} f(x) dx$.

Therefore, there exist y_1 , z_1 in Ω such that $y_1 < c < z_1$ and

 $G(y_1), G(z_1)$ have the same sign or $G(y_1) = G(z_1) = 0$ if and only if there exist a_1, b_1 in Ω such that $a_1 < c < b_1$ and $f(c) = \frac{1}{b_1 - a_1} \int_{a_1}^{b_1} f(x) dx$.

This completes the proof of Case 1 of the theorem.

Case 2: Next, suppose $N \ge 2$.

Suppose that $f(\vec{c})$ is not the absolute maximum or absolute minimum value of f in Ω . Let $g(\vec{x}) = f(\vec{x}) - f(\vec{c})$. Then $g(\vec{c}) = 0$, and $g(\vec{c})$ is not the absolute maximum or absolute minimum value of g in Ω .

We next prove there exists a set $S \subset \Omega$, where $\vec{c} = (c_1, c_2, ..., c_N) \in S$ and where $S = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_N, b_N]$, such that $f(\vec{c}) = \frac{1}{|S|} \int_S f(\vec{x}) d\vec{x}$ if for j=1,2,...,N, there exist y_j , z_j such that $y_i < c_i < z_i$ and $G_i(y_i), G_i(z_i)$ have the same sign or

 $G_{j}(y_{j}) = G_{j}(z_{j}) = 0, \text{ where}$ $G_{j}(t) = \int_{c_{j}}^{t} \int_{a_{j-1}}^{b_{j-1}} \int_{a_{j-2}}^{b_{j-2}} \dots \int_{a_{1}}^{b_{1}} g(x_{1}, x_{2}, \dots, x_{j}, c_{j+1}, \dots c_{N}) dx_{1} dx_{2} \dots dx_{j}.$

To prove this result, we will repeatedly apply the proof used in Case 1 for N=1.

We begin by defining $G_1(t) = \int_{c_1}^{t} g(x_1, c_2, ..., c_N) dx_1$ for t such that $(t, c_2, ..., c_N) \in \Omega$. Recall that $(c_1, c_2, ..., c_N) \in \Omega$. Also, recall that Ω is a bounded, open, convex, connected set, so that $(x_1, c_2, ..., c_N) \in \Omega$ on the interval of integration. And $G_1(c_1) = 0$.

By the proof from Case 1 for N=1, if there exist y_1 , z_1 such that $y_1 < c_1 < z_1$ and $G_1(y_1)$, $G_1(z_1)$ have the same sign or $G_1(y_1) = G_1(z_1) = 0$, then there exist a_1 , b_1 such that $a_1 < c_1 < b_1$ and $G_1(a_1) = G_1(b_1)$. It immediately follows that $\int_{a_1}^{b_1} g(x_1, c_2, ..., c_N) dx_1 = 0$.

Next, we define $G_2(t) = \int_{c_2}^{t} \int_{a_1}^{b_1} g(x_1, x_2, c_3, \dots c_N) dx_1 dx_2$ for t such that $(x_1, t, c_3, \dots, c_N) \in \Omega$ for $a_1 \leq x_1 \leq b_1$. Note that $(x_1, c_2, \dots, c_N) \in \Omega$ for $a_1 \leq x_1 \leq b_1$ by the previous step. Also, recall that Ω is a bounded, open, convex, connected set, so that $(x_1, x_2, c_3, \dots, c_N) \in \Omega$ on the intervals of integration. And $G_2(c_2) = 0$.

By the proof from Case 1 for N=1, if there exist y_2 , z_2 such that $y_2 < c_2 < z_2$ and $G_2(y_2)$, $G_2(z_2)$ have the same sign or $G_2(y_2)=G_2(z_2)=0$, then there exist a_2 , b_2 such that $a_2 < c_2 < b_2$ and $G_2(a_2) = G_2(b_2)$. It immediately follows that $\int_{a_2}^{b_2} \int_{a_1}^{b_1} g(x_1, x_2, c_3, ..., c_N) dx_1 dx_2 = 0$.

Next, for j=3,...,N we define $G_{j}(t) = \int_{c_{j}}^{t} \int_{a_{j-1}}^{b_{j-1}} \int_{a_{j-2}}^{b_{j-2}} \dots \int_{a_{1}}^{b_{1}} g(x_{1}, x_{2}, \dots, x_{j}, c_{j+1}, \dots c_{N}) dx_{1} dx_{2} \dots dx_{j}$ for *t* such that $(x_{1}, x_{2}, \dots, x_{j-1}, t, c_{j+1}, \dots, c_{N}) \in \Omega$ for $a_{i} \leq x_{i} \leq b_{i}$, $i = 1, 2, \dots, j - 1$. Note that $(x_{1}, x_{2}, \dots, x_{j-1}, c_{j}, c_{j+1}, \dots, c_{N}) \in \Omega$ for $a_{i} \leq x_{i} \leq b_{i}$, $i = 1, 2, \dots, j - 1$ by the previous steps. Also, recall that Ω is a bounded, open, convex, connected set, so that $(x_{1}, x_{2}, \dots, x_{j-1}, x_{j}, c_{j+1}, \dots, c_{N}) \in \Omega$ on the intervals of integration. And $G_{j}(c_{j}) = 0$.

By the proof from Case 1 for N=1, if there exist y_j , z_j such that $y_j < c_j < z_j$ and $G_j(y_j)$, $G_j(z_j)$ have the same sign or

$$\begin{split} G_{j}(y_{j}) &= G_{j}(z_{j}) = 0, \text{ then there exist } a_{j}, b_{j} \text{ such that } a_{j} < c_{j} < b_{j} \text{ and } \\ G_{j}(a_{j}) &= G_{j}(b_{j}). \text{ It immediately follows that} \\ \int_{a_{j}}^{b_{j}} \int_{a_{j-1}}^{b_{j-1}} \int_{a_{j-2}}^{b_{j-2}} \dots \int_{a_{1}}^{b_{1}} g(x_{1}, x_{2}, \dots, x_{j}, c_{j+1}, \dots c_{N}) dx_{1} dx_{2} \dots dx_{j} = 0. \end{split}$$

When $\mathbf{j} = \mathbf{N}$, we obtain $\mathbf{f}^{b_N} \mathbf{f}^{b_{N-1}} \mathbf{f}^{b_{N-2}} \mathbf{f}^{b_1}$

$$\int_{a_N}^{b_N} \int_{a_{N-V}}^{b_{N-1}} \int_{a_{N-2}}^{b_{N-2}} \dots \int_{a_1}^{b_1} g(x_1, x_2, \dots, x_N) dx_1 dx_2 \dots dx_N = 0.$$

Since $g(\vec{x}) = f(\vec{x}) - f(\vec{c})$, where $\vec{x} = (x_1, x_2, ..., x_N)$, re-arranging terms in the above identity yields

$$f(\vec{c}) = \frac{1}{\prod_{j=1}^{N} (b_j - a_j)} \int_{a_N}^{b_N} \int_{a_{N-1}}^{b_{N-1}} \int_{a_{N-2}}^{b_{N-2}} \int_{a_1}^{b_1} f(x_1, x_2, ..., x_N) dx_1 dx_2 ... dx_N .$$

Therefore, the set $S = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_N, b_N]$ satisfies

$$f(\vec{c}) = \frac{1}{|S|} \int_{S} f(\vec{x}) d\vec{x}$$
 and $\vec{c} = (c_1, c_2, ..., c_N) \in S$.

This completes the proof of Theorem 2.

† Diane Denny, Ph.D., Texas A&M University-Corpus Christi, USA

References

[1] R. Almeida, "An elementary proof of a converse mean value theorem", Internat. J. Math.Ed. Sci.Tech., **39** (2008), no. 8, 1110--1111.

[2] T. Apostol, Mathematical Analysis, Addison-Wesley: Reading, 1974.

[3] C. Mortici, "A converse of the mean value theorem made easy", Internat. J. Math. Ed. Sci. Tech., **42** (2011), no. 1, 89--91.

[4] J. Tong and P. Braza, "A converse of the mean value theorem for integrals", Internat. J. Math. Ed. Sci. Tech., **33** (2002), no. 2, 277--279.

[5] J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly, **104** (1997), no. 10, 939—942.