A converse of the mean value theorem for integrals of functions of one or more variables

Diane Denny, Ph.D. †

Abstract

Let \(f \) be a continuous function of \(x \) on \(\Omega \), where \(\Omega \subseteq \mathbb{R}^N \), \(N \geq 1 \), is a bounded, open, convex, connected set. We prove that if \(f (\tilde{c}) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \), where \(\tilde{c} \in \Omega \) is a given point, then there exists a set \(S \subseteq \Omega \) such that \(f (\tilde{c}) = \frac{1}{|S|} \int_S f(x)dx \).

Introduction

One version of the Mean Value Theorem of integral calculus states that if \(f \) is a continuous function of \(x \) on a given compact, connected set \(V \subseteq \mathbb{R}^N \), then there exists a point \(\tilde{c} \in V \) such that \(\frac{1}{|V|} \int_V f(x)dx = f (\tilde{c}) \) (see, e.g., [2]).

The question to be considered here is: If \(f (\tilde{c}) \) is the value of a continuous function \(f \) at a given point \(\tilde{c} \in \Omega \), where \(\Omega \subseteq \mathbb{R}^N \), \(N \geq 1 \), is a bounded, open, convex, connected set, then does there exist a set \(S \subseteq \Omega \) such that \(f (\tilde{c}) = \frac{1}{|S|} \int_S f(x)dx \)?

In this paper, we prove that if \(f (\tilde{c}) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \), then there exists a set \(S \subseteq \Omega \) such that \(f (\tilde{c}) = \frac{1}{|S|} \int_S f(x)dx \).

In previous related work by other researchers, several papers have studied the converse of the Mean Value Theorem for functions of one variable. Tong and Braza [4] proved that given a continuous function \(f : [a, b] \rightarrow \mathbb{R} \) and given \(c \in (a, b) \) such that \(c \) is not an accumulation point of the set \(\{ x \in (a, b) : f (x) = f (c) \} \) and \(c \) is not a local extremum point of \(f \), then there exists \((\alpha, \beta) \subseteq (a, b) \), where \(c \in (\alpha, \beta) \), such that \(\int_{\alpha}^{\beta} f(x)dx = f(c) (\beta - \alpha) \).

In related work on the Mean Value Theorem for differentiable functions \(F \) of one variable, Tong and Braza [5] and Mortici [3] proved that if \(F \) is continuous.
on \([a, b]\) and differentiable on \((a, b)\), then there exists an interval \((\alpha, \beta) \subset (a, b)\) such that \(F(\beta) - F(\alpha) = F'(c)(\beta - \alpha)\), provided \(F'\) satisfies certain hypotheses. These hypotheses are that either \(F'(c)\) is not a local extremum value of \(F'(x)\) on \((a, b)\) and \(c\) is not an accumulation point of the set \(\{x \in (a, b): F'(x) = F'(c)\}\), in which case \(c \in (\alpha, \beta)\), or alternatively that \(F'(c)\) is not a global extremum value of \(F'(x)\) on \((a, b)\), in which case \(c\) is not necessarily inside \((\alpha, \beta)\). Almeida [1] proved that if \(F\) is continuous on \([a, b]\) and differentiable on \((a, b)\), then there exists an interval \((\alpha, \beta) \subset (a, b)\) with \(c \in [\alpha, \beta]\) such that \(F(\beta) - F(\alpha) = F'(c)(\beta - \alpha)\), provided that there exists \(k_0 > 0\) such that
\[(c - k_0, c + k_0) \subset (a, b) \text{ and } F'(c - k) \leq F'(c) \leq F'(c + k) \text{ for all } k \in (0, k_0). \]

We have not seen work related to the converse of the Mean Value Theorem for integrals of functions of several variables.

A converse of the mean value theorem for integrals

We present the results of this paper in two theorems. The first theorem considers the existence of a set \(S \subset \Omega\) such that \(f(\bar{c}) = \frac{1}{|S|} \int_S f(\bar{x}) d\bar{x}\).

The second theorem concerns conditions under which \(\bar{c} \in S\) for the special case in which \(S = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_N, b_N]\).

We begin by proving the following theorem:

Theorem 1: Let \(f: \Omega \to R\) be a continuous function of \(\bar{x} \in \Omega\), where \(\Omega \subset \mathbb{R}^N, N \geq 1\), is a bounded, open, convex, connected set. Let \(f(\bar{c})\) be the value of \(f\) at a given point \(\bar{c} \in \Omega\).

If there exists an open set \(A \subset \Omega\) such that \(f(\bar{x}) = f(\bar{c})\) for all \(\bar{x} \in A\), then \(f(\bar{c}) = \int_A f(\bar{x}) d\bar{x}\).

If there does not exist an open set \(A \subset \Omega\) such that \(f(\bar{x}) = f(\bar{c})\) for all \(\bar{x} \in A\), then we have the following cases:
Case 1: If \(f(\bar{c}) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \), then there exists a set \(S_0 \subset \Omega \) such that
\[
f(\bar{c}) = \|S_0^{-1} \int_{S_0} f(\bar{x}) d\bar{x}.
\]

Case 2: If \(f(\bar{c}) \) is the absolute maximum value of \(f \) in \(\Omega \), then there exists a set \(S_1 \subset \Omega \) and a positive constant \(\varepsilon_1 \) such that
\[
f(\bar{c}) = \|S_1^{-1} \int_{S_1} f(\bar{x}) + \varepsilon_1 d\bar{x}.
\]

Case 3: If \(f(\bar{c}) \) is the absolute minimum value of \(f \) in \(\Omega \), then there exists a set \(S_2 \subset \Omega \) and a positive constant \(\varepsilon_2 \) such that
\[
f(\bar{c}) = \|S_2^{-1} \int_{S_2} f(\bar{x}) - \varepsilon_2 d\bar{x}.
\]

Proof:

If there exists an open set \(A \subset \Omega \) such that \(f(\bar{x}) = f(\bar{c}) \) for all \(\bar{x} \in A \), it immediately follows that \(f(\bar{c}) = \|A^{-1} \int_{A} f(\bar{x}) d\bar{x} \). Therefore, now suppose that there does not exist an open set \(A \subset \Omega \) such that \(f(\bar{x}) = f(\bar{c}) \) for all \(\bar{x} \in A \).

We have three possible cases to consider:

(1) Case 1 is the case in which \(f(\bar{c}) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \).

(2) Case 2 is the case in which \(f(\bar{c}) \) is the absolute maximum value of \(f \) in \(\Omega \).

(3) Case 3 is the case in which \(f(\bar{c}) \) is the absolute minimum value of \(f \) in \(\Omega \).

Note that we are not assuming that \(f \) has an absolute maximum value or absolute minimum value in \(\Omega \).

We now consider each case separately.

Case 1: Suppose that \(f(\bar{c}) \) is not the absolute (global) maximum or absolute (global) minimum value of \(f \) in \(\Omega \). Let \(g(\bar{x}) = f(\bar{x}) - f(\bar{c}) \). Then
$g\left(\bar{c}\right) = 0$. Since $f\left(\bar{c}\right)$ is not the absolute maximum value of f in Ω, there exists a point $\bar{x}_1 \in \Omega$ such that $g\left(\bar{x}_1\right) > 0$. Since $g\left(\bar{x}\right)$ is continuous, there exists an open ball $B_1 = B\left(\bar{x}_1, \partial_1\right)$ of radius ∂_1 about the point \bar{x}_1, such that $\overline{B}_1 \subset \Omega$ and such that $g\left(\bar{x}\right) > 0$ for $\bar{x} \in B_1$.

Since $f\left(\bar{c}\right)$ is not the absolute minimum value of f in Ω, there exists a point $\bar{x}_2 \in \Omega$ such that $g\left(\bar{x}_2\right) < 0$. Since $g\left(\bar{x}\right)$ is continuous, there exists an open ball $B_2 = B\left(\bar{x}_2, \partial_2\right)$ of radius ∂_2 about the point \bar{x}_2, such that $\overline{B}_2 \subset \Omega$ and such that $g\left(\bar{x}\right) < 0$ for $\bar{x} \in B_2$.

Since $\overline{B}_1 \subset \Omega$ and $\overline{B}_2 \subset \Omega$, and since Ω is a connected open set in \mathbb{R}^N, it follows that there exists a connected open set $U \subset \Omega$ such that $B_1 \subset U$, and such that $B_2 \subset U$, and such that the distance ∂_2 from the boundary of U to the boundary of Ω is positive, so that $\overline{U} \subset \Omega$. Therefore $B_3 = B\left(\bar{x}, \partial_3\right) \subset \Omega$ for any $\bar{x} \in U$. Let $\partial_4 = \min\{\partial_1, \partial_2, \partial_3\}$. We now define

$$G\left(\bar{x}\right) = \frac{1}{|B(\bar{x}, \partial_4)|} \int_{B(\bar{x}, \partial_4)} g(y)dy,$$ where $\bar{x} \in U$.

It follows that G is a continuous function of \bar{x} on U, and $G\left(\bar{x}_2\right) < 0$ and $G\left(\bar{x}_1\right) > 0$, since $g\left(\bar{y}\right) < 0$ for $\bar{y} \in B\left(\bar{x}_2, \partial_4\right) \subset B_2$ and $g\left(\bar{y}\right) > 0$ for $\bar{y} \in B\left(\bar{x}_1, \partial_4\right) \subset B_1$.

Since G is continuous on the connected set U, and $G\left(\bar{x}_2\right) < 0$ and $G\left(\bar{x}_1\right) > 0$, where $\bar{x}_1 \in U$ and where $\bar{x}_2 \in U$, then by the Intermediate Value Theorem (see, e.g., [2]) there exists a point $\bar{x}_3 \in U$ such that $G\left(\bar{x}_3\right) = 0$. Therefore

$$0 = G\left(\bar{x}_3\right) = \frac{1}{|B(\bar{x}_3, \partial_4)|} \int_{B(\bar{x}_3, \partial_4)} g(\bar{x})d\bar{x} = \frac{1}{|B(\bar{x}_3, \partial_4)|} \int_{B(\bar{x}_3, \partial_4)} f(\bar{c})d\bar{x}.$$

Re-arranging terms yields

$$f(\bar{c}) = \frac{1}{|B(\bar{x}_3, \partial_4)|} \int_{B(\bar{x}_3, \partial_4)} f(\bar{x})d\bar{x}.$$
We define $S_0 = B(\bar{x}_1, \partial_2)$ and the proof for Case 1 is complete.

Case 2: Suppose that $f(\bar{c})$ is the absolute maximum value of f in Ω. Let $B_0 = B(\bar{c}, \partial_0) \subset \Omega$ be the open ball of radius ∂_0 about the point \bar{c} such that ∂_0 is the distance from \bar{c} to the boundary of Ω. Let $B_1 = B(\bar{c}, \partial_1)$ be the open ball of radius $\partial_1 < 1/2 \partial_0$ about the point \bar{c}. Note that $\overline{B_1} \subset \Omega$.

Let $g(\bar{x}) = f(\bar{x}) - f(\bar{c})$. Then $g(\bar{c}) = 0$, and $g(\bar{x}) \leq 0$ for $\bar{x} \in \Omega$. Let $\epsilon_1 = -\epsilon_0 \min_{\overline{B_1}} g(\bar{x})$, where $0 < \epsilon_0 < 1$. Note that $\epsilon_1 > 0$ (since otherwise it would follow that $\min_{x \in \overline{B_1}} g(\bar{x}) = 0 = \max_{x \in \overline{B_1}} g(\bar{x}) = g(\bar{c})$, which implies that $g(\bar{x}) = 0$ in $\overline{B_1}$ and so $f(\bar{x}) = f(\bar{c})$ on the set $A = B_1$, but this contradicts the assumption made at the start of the proof of this theorem that such an open set A does not exist). Also note that ϵ_0 can be arbitrarily small since $\epsilon_1 > 0$ can be arbitrarily small. And since g is continuous on $\overline{B_1}$, it follows that there exists a point $\bar{x}_1 \in \overline{B_1}$ such that $g(\bar{x}_1) = \min_{x \in \overline{B_1}} g(\bar{x}) = -\epsilon_0 \epsilon_1$.

We have $-\epsilon_0 \epsilon_1 = \min_{x \in \overline{B_1}} g(\bar{x}) = g(\bar{x}_1) \leq g(\bar{x}) \leq g(\bar{c}) = \max_{x \in \overline{B_1}} g(\bar{x}) = 0$ for $\bar{x} \in \overline{B_1}$.

Now let $h(\bar{x}) = g(\bar{x}) + \epsilon_0$. It follows that $(1 - 1/\epsilon_0) \epsilon_1 = \min_{x \in \overline{B_1}} h(\bar{x}) = h(\bar{x}_1) \leq h(\bar{x}) \leq h(\bar{c}) = \max_{x \in \overline{B_1}} h(\bar{x}) = \epsilon_1$ for $\bar{x} \in \overline{B_1}$. And $(1 - 1/\epsilon_0) \epsilon_1 < 0$, since $0 < \epsilon_0 < 1$ and $\epsilon_1 > 0$.

Since h is continuous on Ω, and since $h(\bar{x}_1) < 0$ and $h(\bar{c}) > 0$, where $\bar{x}_1 \in \overline{B_1}$ and $\bar{c} \in \overline{B_1}$, it follows that exists a radius $\partial_2 < \partial_1$ such that $h(\bar{x}) < 0$ for $\bar{x} \in B(\bar{x}_1, \partial_2)$, and such that $h(\bar{x}) > 0$ for $\bar{x} \in B(\bar{c}, \partial_2)$.

We now define $H(\bar{x}) = \frac{1}{|B(\bar{x}, \partial_2)|} \int_{B(\bar{x}, \partial_2)} h(\bar{y}) d\bar{y}$, where $\bar{x} \in \overline{B_1}$. Note that
\(B(\bar{x}, \partial_2) \subset B(\bar{c}, \partial_0) \subset \Omega \) for \(\bar{x} \in \overline{B_1} \).

It follows that \(H \) is a continuous function of \(\bar{x} \) on \(\overline{B_1} \), and \(H(\bar{x}) < 0 \) and \(H(\bar{c}) > 0 \), since \(h(\bar{y}) < 0 \) for \(\bar{y} \in B(\bar{x}, \partial_2) \) and \(h(\bar{y}) > 0 \) for \(\bar{y} \in B(\bar{c}, \partial_2) \).

Since \(H \) is a continuous function of \(\bar{x} \) on the connected set \(\overline{B_1} \), and \(H(\bar{x}) < 0 \) and \(H(\bar{c}) > 0 \), then by the Intermediate Value Theorem there exists a point \(\bar{x}_2 \in \overline{B_1} \) such that \(H(\bar{x}_2) = 0 \). Therefore

\[
0 = \frac{1}{|B(\bar{x}_2, \partial_2)|} \int_{B(\bar{x}_2, \partial_2)} h(\bar{x})d\bar{x} = \frac{1}{|B(\bar{x}_2, \partial_2)|} \int_{B(\bar{x}_2, \partial_2)} f(\bar{x}) + \varepsilon_1 d\bar{x}.
\]

Re-arranging terms yields

\[
f(\bar{c}) = \frac{1}{|B(\bar{x}_2, \partial_2)|} \int_{B(\bar{x}_2, \partial_2)} f(\bar{x}) + \varepsilon_1 d\bar{x}.
\]

We define \(S_1 = B(\bar{x}_2, \partial_2) \) and the proof for Case 2 is complete.

Case 3:

Suppose that \(f(\bar{c}) \) is the absolute minimum value of \(f \) in \(\Omega \). Then \(f(\bar{x}) - f(\bar{c}) \geq 0 \) for \(\bar{x} \in \Omega \). Let \(v(\bar{x}) = -f(\bar{x}) \). And so \(v(\bar{x}) - v(\bar{c}) \leq 0 \) for \(\bar{x} \in \Omega \), and \(v(\bar{c}) \) is the absolute maximum value of \(v \) in \(\Omega \). From the proof of Case 2, it follows that there exists a point \(\bar{x}_3 \in \Omega \), and a radius \(\partial_3 \), and a positive constant \(\varepsilon_2 \) such that

\[
v(\bar{c}) = \frac{1}{|B(\bar{x}_3, \partial_3)|} \int_{B(\bar{x}_3, \partial_3)} v(\bar{x}) + \varepsilon_2 d\bar{x}.
\]

Since \(v(\bar{x}) = -f(\bar{x}) \), multiplying this equation by \(-1\) yields

\[
f(\bar{c}) = \frac{1}{|B(\bar{x}_3, \partial_3)|} \int_{B(\bar{x}_3, \partial_3)} f(\bar{x}) - \varepsilon_2 d\bar{x}.
\]

We define \(S_2 = B(\bar{x}_3, \partial_3) \) and the proof for Case 3 is complete.
This completes the proof of Theorem 1.

We now prove the following theorem:

Theorem 2. Let \(f : \Omega \rightarrow R \) be a continuous function of \(\bar{x} \in \Omega \), where \(\Omega \subset R^N, N \geq 1 \), is a bounded, open, convex, connected set. Let \(f(\bar{c}) \) be the value of \(f \) at a given point \(\bar{c} \in \Omega \).

If there exists an open set \(A \subset \Omega \) such that \(f(\bar{x}) = f(\bar{c}) \) for all \(\bar{x} \in A \), where \(\bar{c} \in A \), then
\[
f(\bar{c}) = \frac{1}{|A|} \int_A f(\bar{x})d\bar{x}.
\]

If there does not exist an open set \(A \subset \Omega \) such that \(f(\bar{x}) = f(\bar{c}) \) for all \(\bar{x} \in A \), where \(\bar{c} \in A \), then we have the following cases:

Case 1: Suppose the spatial dimension \(N=1 \).

If \(f(c) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \), then there exist \(a_1, b_1 \) in \(\Omega \) such that \(a_1 < c < b_1 \) and
\[
f(c) = \frac{1}{b_1-a_1} \int_{a_1}^{b_1} f(x)dx \quad \text{if and only if there exist } y_1, z_1 \text{ in } \Omega \text{ such that } y_1 < c < z_1 \text{ and } G(y_1), G(z_1) \text{ have the same sign or } G(y_1) = G(z_1) = 0,
\]
where
\[
G(t) = \int_c^t f(x) - f(c)dx.
\]

Case 2: Suppose the spatial dimension \(N \geq 2 \).

If \(f(\bar{c}) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \), then there exists a set \(S \subset \Omega \), where \(\bar{c} = (c_1, c_2, \ldots, c_N) \in S \), and where
\[
S = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_N, b_N],
\]
such that
\[
f(\bar{c}) = \frac{1}{|S|} \int_S f(\bar{x})d\bar{x}
\]
if for \(j=1,2,\ldots,N \), there exist \(y_j, z_j \) such that \(y_j < c_j < z_j \) and
\[
G_j(y_j), G_j(z_j) \text{ have the same sign or } G_j(y_j) = G_j(z_j) = 0,
\]
where
\[
G_j(t) = \int_y^t f(x) - f(c)dx.
\]
\[G_j(t) = \int_{c_j}^{b_j} \int_{a_{j-1}}^{b_{j-1}} \ldots \int_{a_1}^{b_1} f(x_1, x_2, \ldots, x_j, c_{j+1}, \ldots, c_N) - f(\tilde{c}) \, dx_1 \, dx_2 \ldots \, dx_j \]

where \(a_i, b_j \) are determined iteratively for each \(i \).

Proof of Theorem 2:

If there exists an open set \(A \subset \Omega \) such that \(f(x) = f(\tilde{c}) \) for all \(x \in A \), where \(\tilde{c} \in A \), it immediately follows that \(\frac{1}{|A|} \int_A f(\tilde{x}) \, d\tilde{x} \).

Therefore, now suppose that there does not exist an open set \(A \subset \Omega \) such that \(f(x) = f(\tilde{c}) \) for all \(x \in A \), where \(\tilde{c} \in A \).

We consider the cases in which the spatial dimension \(N=1 \) and in which \(N \geq 2 \) separately.

Case 1: First let \(N=1 \).

Suppose that \(f(c) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \). Let \(g(x) = f(x) - f(c) \). Then \(g(c) = 0 \), and \(g(c) \) is not the absolute maximum or absolute minimum value of \(g \) in \(\Omega \). We define

\[G(t) = \int_t^1 g(x) \, dx = \int_t^1 f(x) - f(c) \, dx, \quad \text{where} \quad t \in \Omega = (a, b). \]

Note that \(G(c) = 0 \).

We begin by proving that there exist \(y_1, z_1 \) in \(\Omega \) such that \(y_1 < c < z_1 \) and \(G(y_1), G(z_1) \) have the same sign (i.e., both are positive or both are negative numbers) or \(G(y_1) = G(z_1) = 0 \) if and only if there exist \(a_1, b_1 \) in \(\Omega \) such that \(a_1 < c < b_1 \) and \(G(a_1) = G(b_1) \).

Therefore, suppose that there exist \(y_1, z_1 \) in \(\Omega \) such that \(y_1 < c < z_1 \) and \(G(y_1), G(z_1) \) have the same sign or \(G(y_1) = G(z_1) = 0 \). If

\[G(y_1) = G(z_1) = 0 \]

then we are done. The desired result that \(G(a_1) = G(b_1) \) holds with \(a_1 = y_1 \) and \(b_1 = z_1 \).
Next, suppose that $G(y_1), G(z_1)$ have the same sign. If $G(y_1) = G(z_1)$ then we are done. The desired result that $G(a_i) = G(b_i)$ holds with $a_i = y_1$ and $b_i = z_1$.

Next, suppose that $G(y_1), G(z_1)$ have the same sign and $G(y_1) \neq G(z_1)$. First, assume that $0 < G(y_1) < G(z_1)$. Recall that $G(c) = 0$ and that $y_1 < c < z_1$. Therefore, by the continuity of $G(t)$ and the Intermediate Value Theorem, it follows that there exists z_2 in Ω such that $c < z_2 < z_1$ and $G(z_2) = G(y_1)$. The desired result that $G(a_i) = G(b_i)$ holds with $a_i = y_1$ and $b_i = z_2$.

Similarly, if $0 < G(z_1) < G(y_1)$, it follows that there exists y_2 in Ω such that $y_1 < y_2 < c$ and $G(y_2) = G(z_1)$. The desired result that $G(a_i) = G(b_i)$ holds with $a_i = y_2$ and $b_i = z_1$.

And if $G(z_1) < G(y_1) < 0$, it follows that there exists z_3 in Ω such that $c < z_3 < z_1$ and $G(z_3) = G(y_1)$. The desired result that $G(a_i) = G(b_i)$ holds with $a_i = y_1$ and $b_i = z_3$.

Finally, if that $G(y_1) < G(z_1) < 0$, it follows that there exists y_3 in Ω such that $y_1 < y_3 < c$ and $G(y_3) = G(z_1)$. The desired result that $G(a_i) = G(b_i)$ holds with $a_i = y_3$ and $b_i = z_1$.

Conversely, suppose that there exist a_i, b_i in Ω such that $a_i < c < b_i$ and $G(a_i) = G(b_i)$. Then $G(a_i) = G(b_i) = 0$ or $G(a_i) = G(b_i) \neq 0$, in which case $G(a_i), G(b_i)$ have the same sign. Therefore, there exist y_i, z_i in Ω such that $y_i < c < z_i$ and $G(y_i), G(z_i)$ have the same sign or $G(y_i) = G(z_i) = 0$, where we define $y_i = a_i$ and $z_i = b_i$.

Therefore, there exist y_1, z_1 in Ω such that $y_1 < c < z_1$ and $G(y_1), G(z_1)$ have the same sign or $G(y_1) = G(z_1) = 0$ if and only if there exist a_i, b_i in Ω such that $a_i < c < b_i$ and $G(a_i) = G(b_i)$.
Since \(G(t) = \int_a^t g(x) \, dx = \int_a^t f(x) - f(c) \, dx \), it immediately follows that
\[
G(a_t) = G(b_t) \quad \text{if and only if} \quad f(c) = \frac{1}{b_t - a_t} \int_{a_t}^{b_t} f(x) \, dx.
\]

Therefore, there exist \(y_1, z_1 \) in \(\Omega \) such that \(y_1 < c < z_1 \) and
\[
G(y_1), G(z_1) \text{ have the same sign or } G(y_1) = G(z_1) = 0 \quad \text{if and only if there exist } a_1, b_1 \text{ in } \Omega \text{ such that } a_1 < c < b_1 \text{ and } f(c) = \frac{1}{b_1 - a_1} \int_{a_1}^{b_1} f(x) \, dx.
\]

This completes the proof of Case 1 of the theorem.

Case 2: Next, suppose \(N \geq 2 \).

Suppose that \(f(\bar{c}) \) is not the absolute maximum or absolute minimum value of \(f \) in \(\Omega \). Let \(g(x) = f(x) - f(\bar{c}) \). Then \(g(\bar{c}) = 0 \), and \(g(\bar{c}) \) is not the absolute maximum or absolute minimum value of \(g \) in \(\Omega \).

We next prove there exists a set \(S \subset \Omega \), where \(\bar{c} = (c_1, c_2, ..., c_N) \in S \) and where \(S = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_N, b_N] \), such that
\[
f(\bar{c}) = \frac{1}{|S|} \int_S f(\bar{x}) \, d\bar{x} \quad \text{if for } j = 1, 2, ..., N, \text{ there exist } y_j, z_j \text{ such that } y_j < c_j < z_j \text{ and } G_j(y_j), G_j(z_j) \text{ have the same sign or } G_j(y_j) = G_j(z_j) = 0 \text{, where}
\]
\[
G_j(t) = \int_{c_j}^{y_j} \int_{a_{j-1}}^{b_{j-1}} \int_{a_{j-2}}^{b_{j-2}} ... \int_{a_{j-1}}^{b_{j-1}} g(x_1, x_2, ..., x_j, c_{j+1}, ..., c_N) \, dx_1 dx_2 ... dx_j.
\]

To prove this result, we will repeatedly apply the proof used in Case 1 for \(N=1 \).

We begin by defining \(G_1(t) = \int_{x_1}^{y_1} g(x_1, c_2, ..., c_N) \, dx_1 \) for \(t \) such that \((t, c_2, ..., c_N) \in \Omega \). Recall that \((c_1, c_2, ..., c_N) \in \Omega \). Also, recall that \(\Omega \) is a bounded, open, convex, connected set, so that \((x_1, c_2, ..., c_N) \in \Omega \) on the interval of integration. And \(G_1(c_1) = 0 \).
By the proof from Case 1 for $N=1$, if there exist y_1, z_1 such that

$$y_1 < c_1 < z_1$$

and $G_1(y_1), G_1(z_1)$ have the same sign or

$$G_1(y_1) = G_1(z_1) = 0,$$

then there exist a_1, b_1 such that $a_1 < c_1 < b_1$ and

$$G_1(a_1) = G_1(b_1).$$

It immediately follows that

$$0 = \int_{a_1}^{b_1} g(x_1, c_2, \ldots, c_N) \, dx_1.$$

Next, we define $G_j(t) = \int_{x_2}^{b_2} \int_{x_3}^{b_3} \cdots \int_{x_j}^{b_j} g(x_1, x_2, c_3, \ldots, c_N) \, dx_1 \, dx_2 \cdots dx_j$ for t such that $(x_1, x_2, \ldots, x_j, c_j, \ldots, c_N) \in \Omega$ for $a_i \leq x_i \leq b_i$. Note that

$$(x_1, x_2, \ldots, x_j, c_j, \ldots, c_N) \in \Omega$$

for $a_i \leq x_i \leq b_i$ by the previous step. Also, recall that Ω is a bounded, open, convex, connected set, so that $(x_1, x_2, c_3, \ldots, c_N) \in \Omega$ on the intervals of integration. And $G_j(c_j) = 0$.

By the proof from Case 1 for $N=1$, if there exist y_2, z_2 such that

$$y_2 < c_2 < z_2$$

and $G_2(y_2), G_2(z_2)$ have the same sign or

$$G_2(y_2) = G_2(z_2) = 0,$$

then there exist a_2, b_2 such that $a_2 < c_2 < b_2$ and

$$G_2(a_2) = G_2(b_2).$$

It immediately follows that

$$0 = \int_{a_2}^{b_2} \int_{a_3}^{b_3} \cdots \int_{a_j}^{b_j} g(x_1, x_2, c_3, \ldots, c_N) \, dx_1 \, dx_2 \cdots dx_j.$$

Next, for $j=3, \ldots, N$ we define

$$G_j(t) = \int_{x_2}^{b_2} \int_{x_3}^{b_3} \cdots \int_{x_{j+1}}^{b_{j+1}} g(x_1, x_2, \ldots, x_{j+1}, c_{j+1}, \ldots, c_N) \, dx_1 \, dx_2 \cdots dx_j$$

for t such that $(x_1, x_2, \ldots, x_{j+1}, c_{j+1}, \ldots, c_N) \in \Omega$ for $a_i \leq x_i \leq b_i$, $i=1, 2, \ldots, j-1$. Note that $(x_1, x_2, \ldots, x_{j+1}, c_{j+1}, \ldots, c_N) \in \Omega$ for $a_i \leq x_i \leq b_i$, $i=1, 2, \ldots, j-1$ by the previous steps. Also, recall that Ω is a bounded, open, convex, connected set, so that $(x_1, x_2, \ldots, x_{j+1}, c_{j+1}, \ldots, c_N) \in \Omega$ on the intervals of integration. And $G_j(c_j) = 0$.

By the proof from Case 1 for $N=1$, if there exist y_j, z_j such that

$$y_j < c_j < z_j$$

and $G_j(y_j), G_j(z_j)$ have the same sign or
\(G_j(y_j)=G_j(z_j)=0 \), then there exist \(a_j, b_j \) such that \(a_j < c_j < b_j \) and \(G_j(a_j)=G_j(b_j) \). It immediately follows that

\[
\int_{a_j}^{b_j} \int_{a_{j+1}}^{b_{j+1}} \ldots \int_{a_N}^{b_N} g(x_1, x_2, \ldots, x_j, c_{j+1}, \ldots, c_N) \, dx_1 \, dx_2 \ldots dx_j = 0.
\]

When \(j = N \), we obtain

\[
\int_{a_N}^{b_N} \int_{a_{N-1}}^{b_{N-1}} \ldots \int_{a_1}^{b_1} g(x_1, x_2, \ldots, x_N) \, dx_1 \, dx_2 \ldots dx_N = 0.
\]

Since \(g(\bar{x}) = f(\bar{x}) - f(\bar{c}) \), where \(\bar{x} = (x_1, x_2, \ldots, x_N) \), re-arranging terms in the above identity yields

\[
f(\bar{c}) = \frac{1}{\prod_{i=1}^{N} (b_i - a_i)} \int_{a_N}^{b_N} \int_{a_{N-1}}^{b_{N-1}} \ldots \int_{a_1}^{b_1} f(x_1, x_2, \ldots, x_N) \, dx_1 \, dx_2 \ldots dx_N.
\]

Therefore, the set \(S = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_N, b_N] \) satisfies

\[
f(\bar{c}) = \frac{1}{|S|} \int_S f(\bar{x}) \, d\bar{x} \quad \text{and} \quad \bar{c} = (c_1, c_2, \ldots, c_N) \in S.
\]

This completes the proof of Theorem 2.

† Diane Denny, Ph.D., Texas A&M University-Corpus Christi, USA

References

