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                                                         Abstract 

 

Let f  be a continuous function of x on Ω , where Ω ⊂ NR , N � 1, is a 

bounded, open, convex, connected set. We prove that if f ( c
�

) is not the 

absolute maximum or absolute minimum value of f  in Ω , where c
�

∈ Ω  is a 

given point, then there exists a set S ⊂ Ω  such that �=
S

xdxf
S

cf
���

)(
||

1
)( . 

                                                      Introduction 

 

One version of the Mean Value Theorem of integral calculus states that if f  is 

a continuous function of x
�

 on a given compact, connected set ⊂V NR , then 

there exists a point c
�

V∈  such that � =
V

cfxdxf
V

)()(
||

1 ���
 (see, e.g., [2]). 

The question to be considered here is: If f ( c
�

) is the value of a continuous 

function f at a given point c
�

 ∈ Ω , where Ω ⊂  
NR , N � 1, is a bounded, 

open, convex, connected set, then does there exist a set S ⊂ Ω  such that 

�=
S

xdxf
S

cf
���

)(
||

1
)( ? 

In this paper, we prove that if f ( c
�

) is not the absolute maximum or absolute 

minimum value of  f  in Ω , then there exists a set S ⊂ Ω  such that 

�=
S

xdxf
S

cf
���

)(
||

1
)( . 

In previous related work by other researchers, several papers have studied the 

converse of the Mean Value Theorem for functions of one variable. Tong and 

Braza [4] proved that given a continuous function f :[ ba, ] → R  and given 

c ∈  ( ba, ) such that c  is not an accumulation point of the set{ x ∈( ba, ): 

f ( x ) = f ( c )} and c  is not a local extremum point of f , then  there exists 

( βα , ) ⊂  ( ba, ), where c ∈  ( βα , ), such that � =
β

α
)()( cfdxxf ( αβ − ). 

In related work on the Mean Value Theorem for differentiable functions F of 

one variable, Tong and Braza [5] and Mortici [3] proved that if  F is continuous 
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on [ ba, ] and differentiable on ( ba, ), then there exists an interval ( βα , ) ⊂  

( ba, ) such that F ( β ) F− (α )= F ′ ( c )( αβ − ), provided F ′ satisfies 

certain hypotheses. These hypotheses are that either F ′ ( c ) is not a local 

extremum value of F ′ ( x ) on ( ba, ) and c  is not an accumulation point of the 

set { x ∈( ba, ): F ′ ( x ) = F ′ ( c )}, in which case c ∈  ( βα , ), or 

alternatively that F ′ ( c ) is not a global extremum value of F ′ ( x ) on ( ba, ), 

in which case c  is not necessarily inside ( βα , ). Almeida [1] proved that if 

F is continuous on [ ba, ] and differentiable on ( ba, ), then there exists an 

interval ( βα , ) ⊂  ( ba, ) with c∈  [ βα , ] such that F ( β ) F− (α )  =  

F ′ ( c )( αβ − ), provided that there exists 00 >k  such that  

( −c 0k , c 0k+ ) ⊂ ( ba, ) and F ′ ( −c  k) � F ′ ( c ) � F ′ ( +c  k) for all 

k∈  ( 0 , 0k ). 

 

We have not seen work related to the converse of the Mean Value Theorem for 

integrals of functions of several variables. 

 

               A converse of the mean value theorem for integrals  
 

We present the results of this paper in two theorems. The first theorem considers 

the existence of a set S ⊂ Ω  such that �=
S

xdxf
S

cf
���

)(
||

1
)( . 

The second theorem concerns conditions under which c
�

 ∈ S  for the special 

case in which S  = [ ,1a 1b ]× [ ,2a 2b ]× ...×  [ ,Na Nb ]. 

 

We begin by proving the following theorem: 

 

Theorem 1: Let f : Ω  →  R  be a continuous function of x
�

 ∈ Ω , where 

Ω ⊂ NR , N � 1, is a bounded, open, convex, connected set. Let f ( c
�

) be the 

value of f at a given point c
�

∈ Ω .  

If there exists an open set A ⊂ Ω  such that f ( x
�

) = f ( c
�

) for all x
�

∈ A , 

then �
−=

A

xdxfAcf
���

)(||)( 1
.  

If there does not exist an open set  A ⊂ Ω  such that f ( x
�

) = f ( c
�

) for all 

x
�

∈ A , then we  have the following cases: 
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Case 1: If f ( c
�

) is not the absolute maximum or absolute minimum value 

of f in Ω , then there exists a set 0S ⊂ Ω  such that 

�
−=

0

)(||)( 1

0

S

xdxfScf
���

. 

Case 2: If f ( c
�

) is the absolute maximum value of f in Ω , then there exists a 

set 1S ⊂ Ω  and a positive constant � 1 such that 

� += −

1

1

1

1 )(||)(
S

xdxfScf
���

ε . 

Case 3: If f ( c
�

) is the absolute minimum value of f in Ω , then there exists a 

set 2S ⊂ Ω  and a positive constant � 2 such that 

� −= −

2

2

1

2 )(||)(
S

xdxfScf
���

ε . 

 Proof: 

 

If there exists an open set A ⊂ Ω  such that f ( x
�

) = f ( c
�

) for all x
�

∈ A , it 

immediately follows that �
−=

A

xdxfAcf
���

)(||)( 1
. Therefore, now suppose 

that there does not exist an open set A ⊂ Ω  such that f ( x
�

) = f ( c
�

) for all 

x
�

∈ A . 

 

We have three possible cases to consider: 

 

(1) Case 1 is the case in which f ( c
�

) is not the absolute maximum or absolute 

minimum value of f in Ω .  

(2)  Case 2 is the case in which f ( c
�

) is the absolute maximum value                            

of f in Ω . 

(3)  Case 3 is the case in which f ( c
�

) is the absolute minimum value  

of f in Ω . 

 

Note that we are not assuming that f has an absolute maximum value or 

absolute minimum value in Ω . 

 

We now consider each case separately. 

 

Case 1:  Suppose that f ( c
�

) is not the absolute (global) maximum or absolute 

(global) minimum value of f in Ω . Let g ( x
�

) = f ( x
�

) f− ( c
�

). Then  
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g ( c
�

) 0= . Since f ( c
�

) is not the absolute maximum value of f in Ω , there 

exists a point 1x
�

∈ Ω  such that g ( 1x
�

) 0> . Since g ( x
�

) is continuous, there 

exists an open ball 1B = B ( 1x
�

, 1∂ ) of radius 1∂  about the point 1x
�

, such that 

1B  ⊂ Ω  and such that g ( x
�

) 0> for x
�

∈ 1B . 

 

Since f ( c
�

) is not the absolute minimum value of f in Ω , there exists a point 

2x
�

∈ Ω  such that g ( 2x
�

) 0< . Since g ( x
�

) is continuous, there exists an 

open ball 2B = B ( 2x
�

, 2∂ ) of radius 2∂ about the point 2x
�

, such that 2B  ⊂ Ω  

and such that  g ( x
�

) 0<  for x
�

 ∈  2B . 

 

Since 1B  ⊂ Ω  and 2B  ⊂ Ω , and since Ω  is a connected open set in
NR , it 

follows that there exists a connected open set U ⊂ Ω  such that 1B  ⊂  U , 

and such that 2B ⊂ U , and such that the distance 3∂  from the boundary of U  

to the boundary of Ω  is positive, so that U ⊂  Ω . Therefore 3B = B  ( x
�

, 3∂ ) 

⊂ Ω  for any x
�

∈   U .   Let 4∂  = min{ 1∂ , 2∂ , 3∂ }. We now define  

 G ( x
�

) = �
∂

∂
),(4

4

)(
|),(|

1

xB

ydyg
xB �

��
� , where x

�
 ∈  U . 

 

It follows that G  is a continuous function of x
�

 on U , and G ( 2x
�

) 0<   and 

G ( 1x
�

) 0> , since g ( y
�

) 0<  for y
�

∈ B ( 2x
�

, 4∂ ) ⊂ 2B  and g ( y
�

) 0> for     

y
�

∈ B ( 1x
�

, 4∂ ) ⊂ 1B . 

 

Since G  is continuous on the connected set  U , and G ( 2x
�

) 0<  and    

G ( 1x
�

) 0> , where 1x
�

 ∈   U  and where 2x
�

∈  U , then by the Intermediate 

Value Theorem (see, e.g., [2]) there exists a point 3x
�

 ∈  U  such that  

G ( 3x
�

) 0= . Therefore 

0 = G ( 3x
�

)= �
∂

∂
),(43

43

)(
|),(|

1

xB

xdxg
xB �

��
� = �

∂

−
∂

),(43
43

)()(
|),(|

1

xB

xdcfxf
xB �

���
� . 

 

Re-arranging terms yields 

�
∂

∂
=

),(43
43

)(
|),(|

1
)(

xB

xdxf
xB

cf
�

��
�

�
. 

 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 9 No. 2      5 

We define 0S = B ( 3x
�

, 4∂ ) and the proof for Case 1 is complete. 

 

Case 2:  Suppose that f ( c
�

) is the absolute maximum value of f in Ω . Let 

0B  = B ( c
�

, 0∂ ) ⊂ Ω   be the open ball of radius 0∂  about the point c
�

such 

that 0∂  is the distance from c
�

 to the boundary of Ω .  Let 1B = B ( c
�

, 1∂ )  be 

the open ball of radius 1∂  < 1/2 0∂  about the point c
�

. Note that 1B  ⊂ Ω . 

 

Let g ( x
�

) = f ( x
�

) f− ( c
�

). Then g ( c
�

) 0= , and g ( x
�

) 0≤ for 

x
�

∈ Ω . Let 1ε  = 0ε−  min
1Bx∈

� g ( x
�

), where 0< 0ε <1. Note that 1ε 0>  

(since otherwise it would follow that min
1Bx∈

� g ( x
�

) 0= = max
1Bx∈

� g ( x
�

) = 

g ( c
�

), which implies that g ( x
�

) 0= in 1B  and so f ( x
�

) = f ( c
�

) on the 

set A = 1B , but this contradicts the assumption made at the start of the proof of 

this theorem that such an open set A  does not exist). Also note that 1ε  can be 

arbitrarily small since 0ε  can be arbitrarily small. And since g  is continuous 

on 1B , it follows that there exists a point 1x
�

∈ 1B  such that g ( 1x
�

) = 

min
1Bx∈

� g ( x
�

) = 1ε− / 0ε .  

 

We have 1ε− / 0ε  = min
1Bx∈

� g ( x
�

) = g ( 1x
�

) � g ( x
�

) � g ( c
�

) = 

max
1Bx∈

� g ( x
�

) 0=   for x
�

∈ 1B . 

 

Now let h ( x
�

) = g ( x
�

) 1ε+ . It follows that ( 0/11 ε− ) 1ε = min
1Bx∈

� h ( x
�

)  = 

h ( 1x
�

) �  h ( x
�

)  �  h ( c
�

) = max
1Bx∈

� h ( x
�

) = 1ε   for  x
�

∈  1B .  And 

( 0/11 ε− ) 1ε 0< , since 0< 0ε <1  and 1ε 0> . 

 

Since h  is continuous on Ω , and since h ( 1x
�

) 0<  and  h ( c
�

) 0> , where  

1x
�

∈ 1B  and  c
�

∈ 1B , it follows that exists a radius 2∂ < 1∂  such  that 

h ( x
�

) 0<  for x
�

∈ B  ( 1x
�

, 2∂ ),  and such that h ( x
�

) 0>  for 

x
�

∈ B ( c
�

, 2∂ ). 

 

We now define H ( x
�

) = �
∂

∂
),(2

2

)(
|),(|

1

xB

ydyh
xB �

��
� , where x

�
 ∈ 1B .  Note that 
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B ( x
�

, 2∂ ) ⊂ B ( c
�

, 0∂ ) ⊂ Ω    for x
�

∈ 1B . 

 

It follows that H  is a continuous function of x
�

 on 1B , and  H ( 1x
�

) 0<  and 

H ( c
�

) 0> , since h ( y
�

) 0<  for y
�

∈ B ( 1x
�

, 2∂ ) and h ( y
�

) 0>  for 

y
�

∈ B ( c
�

, 2∂ ). 

 

Since H  is a continuous function of x
�

 on the connected set 1B , and  

H ( 1x
�

) 0<   and H ( c
�

) 0> , where 1x
�

∈ 1B  and where c
�

∈ 1B , then by the 

Intermediate Value Theorem there exists a point 2x
�

∈ 1B  such that 

H ( 2x
�

) 0= . Therefore 

=0 �
∂

∂
),(22

22

)(
|),(|

1

xB

xdxh
xB �

��
� = �

∂

+−
∂

),(

1

22
22

)()(
|),(|

1

xB

xdcfxf
xB �

���
� ε . 

 

 

Re-arranging terms yields 

�
∂

+
∂

=
),(

1

22
22

)(
|),(|

1
)(

xB

xdxf
xB

cf
�

��
�

�
ε . 

 

We define 1S  = B ( 2x
�

, 2∂ ) and the proof for Case 2 is complete. 

 

 

Case 3: 

 

Suppose that f ( c
�

) is the absolute minimum value of f in Ω .  Then     

f ( x
�

) f− ( c
�

) 0≥  for x
�

∈ Ω . Let v ( x
�

) = f− ( x
�

). And so  

v ( x
�

) v− ( c
�

) 0≤  for x
�

 ∈ Ω , and v ( c
�

) is the absolute maximum value of 

v  in Ω . From the proof of Case 2, it follows that there exists a point 3x
�

 ∈ Ω , 

and a radius 3∂ , and a positive constant 2ε such that 

�
∂

+
∂

=
),(

2

33
33

)(
|),(|

1
)(

xB

xdxv
xB

cv
�

��
�

�
ε . 

Since v  ( x
�

) = f− ( x
�

), multiplying this equation by 1−  yields 

�
∂

−
∂

=
),(

2

33
33

)(
|),(|

1
)(

xB

xdxf
xB

cf
�

��
�

�
ε . 

We define 2S = B ( 3x
�

, 3∂ ) and the proof for Case 3 is complete. 
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This completes the proof of Theorem 1. 

 

We now prove the following theorem: 

 

Theorem 2: Let f : Ω  → R  be a continuous function of x
�

 ∈ Ω , where   

Ω  ⊂ NR , N � 1, is a bounded, open, convex, connected set. Let f ( c
�

) be the 

value of f at a given point c
�

∈ Ω . 

 

If there exists an open set A ⊂ Ω  such that f ( x
�

)= f ( c
�

) for all x
�

∈ A , 

where c
�

∈ A , then �=
A

xdxf
A

cf
���

)(
||

1
)(  .                                                             

 

If there does not exist an open set A ⊂ Ω  such that f ( x
�

) = f ( c
�

) for all  

x
�

∈ A , where c
�

∈ A , then we have the following cases: 

 

 

Case 1:  Suppose the spatial dimension N=1.   

 

If f ( c ) is not the absolute maximum or absolute minimum value of f  in Ω , 

then there exist 1a , 1b  in Ω  such that 1a  1bc <<   and 

�−
=

1

1

)(
1

)(
11

b

a
dxxf

ab
cf   if and only if there exist 1y , 1z  in Ω  such that 

1y  1zc <<  and )( 1yG , )( 1zG have the same sign or 0)()( 11 == zGyG , 

where  � −=
t

c
dxcfxftG )()()( . 

 

 

Case 2: Suppose the spatial dimension N ≥  2. 

 

If f ( c
�

) is not the absolute maximum or absolute minimum value of f in Ω , 

then there exists a set S ⊂ Ω , where c
�

= ( Nccc ,...,, 21 )∈ S ,  and  where   

S  = [ 1a , 1b ]×  [ 2a , 2b ]× ...×  [ Na , Nb ], such that �=
S

xdxf
S

cf
���

)(
||

1
)(  

if for j=1,2,...,N,  there exist jy , jz   such that jy  jj zc <<  and 

jG ( jy ), jG ( jz )  have the same sign or jG ( jy ) = jG ( jz ) 0= , where 
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� � �� −= +

−

−

−

−

t

c
jNjj

b

a

b

a

b

a
j

j

j

j

j

j

dxdxdxcfccxxxftG ...)(),...,,...,,(...)( 21121

2

2

1

1

1

1

�

where ia , ib  are determined iteratively for each i . 

 

Proof of Theorem 2: 

 

If there exists an open set A ⊂ Ω  such that f ( x
�

) = f ( c
�

) for all x
�

∈ A , 

where c
�

∈ A , it immediately follows that �=
A

xdxf
A

cf
���

)(
||

1
)( . 

 

Therefore, now suppose that there does not exist an open set A ⊂ Ω  such that 

f ( x
�

) = f ( c
�

) for all x
�

∈ A , where c
�

∈ A . 

 

We consider the cases in which the spatial dimension N=1 and in 

which N ≥ 2 separately. 

 

Case 1: First let N=1. 

 

Suppose that f ( c ) is not the absolute maximum or absolute minimum value of 

f in Ω . Let g ( x ) = )(xf  )(cf− . Then g ( c ) 0= , and g ( c ) is not the 

absolute maximum or absolute minimum value of g in Ω . We define 

�=
t

c
dxxgtG )()( � −=

t

c
dxcfxf )()( ,   where ∈t Ω  = ( ba, ).    Note that 

0)( =cG . 

 

We begin by proving that there exist 1y , 1z  in Ω  such that 1y  1zc <<  and  

)( 1yG , )( 1zG have the same sign (i.e., both are positive or both are negative 

numbers) or  0)()( 11 == zGyG if and only if there exist 1a , 1b  in Ω  such 

that 1a  1bc <<  and  )()( 11 bGaG = . 

 

Therefore, suppose that there exist 1y , 1z  in Ω  such that 1y 1zc <<   and 

)( 1yG , )( 1zG have the same sign or 0)()( 11 == zGyG .  If 

0)()( 11 == zGyG  then we are done. The desired result that 

)()( 11 bGaG =  holds with 11 ya =  and 11 zb = . 
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Next, suppose that )( 1yG , )( 1zG have the same sign. If )()( 11 zGyG =  then 

we are done.  The desired result that )()( 11 bGaG =  holds with 11 ya =  and  

11 zb = . 

 

Next suppose that )( 1yG , )( 1zG have the same sign and )( 1yG ≠  )( 1zG . 

First, assume that   )(0 1yG< )( 1zG< . Recall that 0)( =cG  and that 

11 zcy << . Therefore, by the continuity of )(tG  and the Intermediate Value 

Theorem, it follows that there exists 2z  in Ω  such that  12 zzc <<  and 

)( 2zG = )( 1yG . The desired result that )()( 11 bGaG =  holds with 

11 ya = and 21 zb = . 

 

Similarly, if   )(0 1zG< )( 1yG< , it follows that there exists 2y  in Ω  such 

that  cyy << 21  and )( 2yG = )( 1zG . The desired result that 

)()( 11 bGaG =  holds with 21 ya =  and 11 zb = . 

 

And if )( 1zG 0)( 1 << yG , it follows that there exists 3z  in Ω  such that  

13 zzc <<  and )( 3zG = )( 1yG . The desired result that )()( 11 bGaG =  

holds with 11 ya =  and  31 zb = . 

 

Finally, if that   <)( 1yG 0)( 1 <zG , it follows that there exists 3y  in Ω  

such that  cyy << 31  and )( 3yG  = )( 1zG . The desired result that 

)()( 11 bGaG =  holds with 31 ya =  and 11 zb = . 

 

Conversely, suppose that there exist 1a , 1b  in Ω  such that 1a  1bc <<  and 

)()( 11 bGaG = .Then 0)()( 11 == bGaG or 0)()( 11 ≠= bGaG , in which 

case )(),( 11 bGaG have the same sign. Therefore, there exist 1y , 1z  in Ω   

such that 1y 1zc <<  and )( 1yG , )( 1zG have the same sign or 

0)()( 11 == zGyG , where we define 11 ay =  and 11 bz = . 

 

Therefore, there exist 1y , 1z  in Ω  such that 1y  1zc <<  and 

)( 1yG , )( 1zG have the same sign  or 0)()( 11 == zGyG  if and only if  

there exist 1a , 1b  in Ω  such that 1a  1bc <<  and  )()( 11 bGaG = . 
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Since �=
t

c
dxxgtG )()( � −=

t

c
dxcfxf )()( , it immediately follows that 

)()( 11 bGaG =   if and only if �−
=

1

1

)(
1

)(
11

b

a
dxxf

ab
cf . 

 

Therefore, there exist 1y , 1z  in Ω  such that 1y 1zc <<    and 

)( 1yG , )( 1zG have the same sign or 0)()( 11 == zGyG  if and only if  there 

exist 1a , 1b  in Ω  such that 1a  1bc <<   and �−
=

1

1

)(
1

)(
11

b

a
dxxf

ab
cf . 

 

This completes the proof of Case 1 of the theorem. 

 

Case 2: Next, suppose N ≥ 2. 

 

Suppose that f ( c
�

) is not the absolute maximum or absolute minimum value of 

f in Ω . Let )(xg
�

= )()( cfxf
��

− .Then 0)( =cg
�

, and g ( c
�

) is not the 

absolute maximum or absolute minimum value of g  in Ω . 

 

We next prove there exists a set S  ⊂ Ω , where c
�

= ( Nccc ,...,, 21 ) ∈  S  and 

where S = [ 1a , 1b ]×  [ 2a , 2b ]× ...×  [ Na , Nb ], such that 

�=
S

xdxf
S

cf
���

)(
||

1
)(      if for j=1,2,...,N,  there exist jy , jz  such that  

jy jj zc <<  and jG ( jy ), jG ( jz ) have the same sign or 

jG ( jy )= jG ( jz ) 0= , where 

� � �� +

−

−

−

−

=
t

c
jNjj

b

a

b

a

b

a
j

j

j

j

j

j

dxdxdxccxxxgtG ...),...,,...,,(...)( 21121

2

2

1

1

1

1

.  

 

To prove this result, we will repeatedly apply the proof used in Case 1 for  N=1. 

 

We begin by defining �=
t

c
N dxccxgtG

1
1211 ),...,()(  

for t  such that ),...,,( 2 Ncct ∈ Ω . Recall that ),...,,( 21 Nccc  ∈ Ω . Also, 

recall that � is a bounded, open, convex, connected set, so that  

),...,,( 21 Nccx ∈ Ω  on the interval of integration.  And 1G ( 1c ) 0= . 
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By the proof from Case 1 for  N=1, if there exist 1y , 1z such that                     

1y  11 zc <<   and 1G ( 1y ), 1G  ( 1z )  have the same sign or                  

1G ( 1y ) = 1G  ( 1z ) 0= , then there exist 1a , 1b  such that 1a  11 bc <<    and 

1G ( 1a ) = 1G  ( 1b ). It immediately follows that 0),...,(
1

1
121 =�

b

a
N dxccxg . 

 

Next, we define � �=
t

c
N

b

a
dxdxccxxgtG

2

1

1
213212 ),...,,()(  

for t  such that Ω∈),...,,,( 31 Ncctx  for  1a  11 bx ≤≤ . Note that  

),...,,( 21 Nccx  ∈ Ω   for 1a  11 bx ≤≤  by the previous step. Also, recall that 

Ω  is a bounded, open, convex, connected set, so that ),...,,,( 321 Nccxx ∈ Ω  

on the intervals of integration.  And 2G ( 2c ) 0= . 

 

By the proof from Case 1 for  N=1, if there exist 2y , 2z  such that 

2y 22 zc <<   and 2G ( 2y ), 2G  ( 2z )  have the same sign or     

2G ( 2y )= 2G  ( 2z ) 0= , then there exist 2a , 2b  such that 2a  22 bc <<    

and 2G ( 2a ) = 2G ( 2b ).  It immediately follows that 

0),...,,( 21321

1

1

2

2

=�� dxdxccxxg
b

a
N

b

a
. 

 

Next, for j=3,...,N  we define 

� � �� +

−

−

−

−

=
t

c
jNjj

b

a

b

a

b

a
j

j

j

j

j

j

dxdxdxccxxxgtG ...),...,,...,,(...)( 21121

2

2

1

1

1

1

 

for t  such that Ω∈+− ),...,,,,...,,( 1121 Njj cctxxx  for  ia ii bx ≤≤ , 

1,...,2,1 −= ji .  Note that Ω∈+− ),...,,,,...,,( 1121 Njjj cccxxx    for 

ia ii bx ≤≤ ,   1,...,2,1 −= ji   by the previous steps. Also, recall that  

Ω  is a bounded, open, convex, connected set,  so that 

Ω∈+− ),...,,,,...,,( 1121 Njjj ccxxxx   on the intervals of integration.  And 

jG ( jc ) 0= . 

 

By the proof from Case 1 for  N=1,  if there exist jy , jz  such that                   

jy  jj zc <<   and jG ( jy ), jG  ( jz )   have the same sign  or                    
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jG  ( jy )= jG  ( jz ) 0= , then there exist ja , jb  such that ja  jj bc <<  and 

jG ( ja )= jG ( jb ) .  It immediately follows that 

� � �� =+

−

−

−

−

j

j

j

j

j

j

b

a
jNjj

b

a

b

a

b

a
dxdxdxccxxxg 0...),...,,...,,(... 21121

2

2

1

1

1

1

. 

 

When j = N, we obtain 

� � �� =
−

−

−

−

N

N

N

N

N

N

b

a
NN

b

a

b

a

b

a
dxdxdxxxxg 0...),...,,(... 2121

2

2

1

1

1

1

. 

 

Since )(xg
�

= )()( cfxf
��

− , where x
�

= ),...,,( 21 Nxxx ,  re-arranging terms in 

the above identity yields 

 

� � ��
∏

−

−

−

−

=

−

=
N

N

N

N

N

N

b

a
NN

b

a

b

a

b

aN

j

jj

dxdxdxxxxf

ab

cf ...),...,,(...

)(

1
)( 2121

1

2

2

1

1

1

1

�
. 

Therefore, the set S = [ 1a , 1b ]×  [ 2a , 2b ]× ...×  [ Na , Nb ] satisfies 

�=
S

xdxf
S

cf
���

)(
||

1
)(    and c

�
= ( Nccc ,...,, 21 ) ∈ S . 

 

This completes the proof of Theorem 2. 

 

† Diane Denny, Ph.D., Texas A&M University-Corpus Christi, USA  
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