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Abstract 

 

This study reports an analysis of 29 prospective elementary teachers’ 

explicit knowledge of the arbitrary nature of the unit within contexts involving 

fractions. To this end, the participants were administered two questionnaires. 

The first questionnaire included an open-response task in which they were asked 

what fraction or fractions the shaded portion of a diagram could represent. The 

second questionnaire consisted of six tasks that asked the subjects to justify 

whether the same picture could be used to represent the following fractions ¾, 

3/5, 3/10, 1 ½, ½ and 1. Results indicate that most students were not able to 

conceptualize that a given shaded region could represent different fractions from 

the ones most naturally suggested by the given diagram.    

 

Introduction 
 

Research on teachers’ knowledge has evolved from examining 

teacher’s general knowledge of mathematics to teachers’ knowledge of specific 

mathematical content (Ball, 1990; Ball, Lubienski, & Mewborn, 2001; Davis & 

Simmt, 2006, Graeber & Tirosh, 1988). This evolution was the result of the 

failure of past research in finding a link between teachers’ knowledge and 

student achievement. Shulman (1986) was one of the first researchers to argue 

that teachers need to have pedagogical content knowledge, a special type of 

knowledge that includes students’ conceptions and misconceptions, typical 

difficulties that students have, and multiple representations of a particular topic.  

Building on Shulman’s construct of pedagogical content knowledge, 

Ball and her colleagues (Ball & Bass, 2000; Ball, Lubienski, & Mewborn, 2001; 

Hill Schilling, and Ball, 2004) have used the term “mathematical knowledge for 

teaching” to refer to the mathematics knowledge that teachers use when 

performing instructional tasks to teach a specific mathematical topic, such as the 

concept of fraction.  

Past research has documented that teachers’ knowledge of fractions and 

operations is underdeveloped (Graeber, Tirosh, & Glover, 1989; Izsák, 2008; 

Simon, 1993; Tirosh & Graeber, 1989; Tobias, 2013). Izsák (2008), for 

example, examined the mathematical knowledge that two sixth-grade teachers 

used when teaching lessons on multiplication of fractions. He concluded that for 

teachers to teach effectively multiplication of fractions, they need to coordinate 

flexibly three-level unit structures. In a more recent study, Tobias (2013) 
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investigated the difficulties that some prospective elementary teachers had with 

identifying the referent whole and corresponding language that they used for 

describing fractional amounts. It is then imperative that researchers investigate 

prospective teachers’ explicit knowledge of the unit within contexts involving 

fractions. This study focuses mainly on characterizing prospective elementary 

teachers’ explicit knowledge of the arbitrary nature of the unit within fractional 

contexts involving drawn diagrams. However, through examination of this 

characterization, this study may also contribute to our continuing discussion of 

what might constitute mathematical knowledge for teaching the concept of 

fraction.   

Empirical Background 
 

Concepts related to fraction and their associated operations, particularly 

multiplication and division, are challenging for most students to learn (Lamon, 

2005; Mack, 1995; Ni & Zhou, 2005; Streefland, 1991). One of the most 

fundamental ideas in developing fractional thinking is the concept of the unit or 

whole. However, researchers have documented that students and prospective 

elementary teachers have difficulties conceptualizing the whole within problem 

situations involving fractions (Ball, 1990; Luo, Lo, & Leu, 2011; Simon, 1993; 

Tobias, 2013). Ball, for example, asked 19 prospective elementary and 

secondary teachers to write a word problem for which 1 ¾ ÷ ½ is the appropriate 

mathematical computation. She reported that only five participants were able to 

generate an appropriate word problem. The remaining 14 college students either 

generated an inappropriate representation or were unable to generate a 

representation. Several of the inappropriate story problems could be solved 

using 1 ¾ ÷ 2 whose solution is 7/8. When comparing the two solutions (3 ½ for 

1 ¾ ÷ ½ and 7/8 for 1 ¾ ÷ 2) some prospective teachers used a context involving 

pizzas and reasoned that each pizza “is divided into four pieces, so you have 

seven pieces. So each person gets 7/8 of a pizza, which is 3 ½ pieces of pizza.” 

Notice that 3 ½ pieces of pizza is refereeing to 3 ½ fourths of a pizza as opposed 

to 3 ½ one-halves of a pizza. As another example, Simon (1993) presented 33 

prospective elementary teachers with the task of finding how much flour is left 

over after one makes as many cookies as possible with 35 cups of flour if each 

cookie requires 3/8 of a cup. He reported that only about 15% of the students 

provided a correct response while about 30% of the respondents claimed that 1/3 

of a cup of flour was left over. The remaining prospective elementary teachers 

provided other incorrect solutions or no solutions.  

 
Conceptual Framework 

 

Some challenges that students have in learning concepts associated 

with fractions result from incorrectly applying ideas from whole numbers. In the 

context of whole numbers, the unit is always explicit (e.g., 7 always refers to 7 

units). Within contexts involving fractions, on the other hand, the unit is often 

implicit. By its own nature, a fraction is always linked to a unit, so one must 

always identify the unit in a contextual problem situation (what is “one whole” 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 9 No. 2      45 

object or set?). Unlike with whole numbers, a unit within fractional contexts 

may not necessarily be a discrete set of objects. The nature of the unit may 

change not only across contexts but also within the same context. For example, 

one can of cola may be thought of as 1/24 of a case, 1/12 of a dozen, 1/6 of a 6-

pack, etc. It is the flexibility to reconceptualize quantities in different chunks 

that helps learners to link meanings, symbols, and operations so they can apply 

their knowledge in different contexts (Lamon, 2002). 

The mental process of assigning a unit of measurement to a given 

quantity is known as unitizing (Lamon, 1996, 2002). It can be thought of as the 

size chunk one must construct “in terms of which to think about a given 

commodity” (Lamon, 1996, p. 170). Of course, the unitizing process is also 

reversible. Given a fraction represented with a diagram, one may need to 

identify the unit or whole.  

Previous research has provided evidence that changes on the nature of the 

unit within a problem situation explains some of the conceptual hurdles that 

students experience in linking procedural and conceptual fractional knowledge 

(Behr, Harel, Post, & Lesh, 1992; Harel & Confrey, 1994; Hiebert & Behr, 

1988; Lamon, 1996). More recently, researchers have concluded that the 

challenges in coordinating flexibly different levels of unit structures accounts to 

a great extent for the cognitive difficulties in understanding multiplication and 

division of fractions (Izsák, 2008; Izsák, Jacobson, de Araujo, & Orill, 2012). 

 

Methodology and Data Sources 

 
Twenty nine prospective elementary teachers enrolled in a mathematics 

content course for elementary education majors participated in this study. They 

were asked to complete two questionnaires with a total of 7 tasks. The first 

questionnaire consisted of only one task (Fig. 1) and the second questionnaire 

consisted of 6 tasks (Figure 2). After all students completed questionnaire 1 they 

were given questionnaire 2.  

The tasks included in the questionnaire were designed to assess prospective 

elementary teachers’ explicit knowledge of the arbitrary nature of a unit within 

fraction contexts. By formulating the problem “in reverse” – by providing a 

diagram with a shaded portion and asking them the fraction or fractions that the 

shaded part of the figure could represent or whether the shaded diagram could 

represent certain fractions – there was a demand for an explicit awareness of the 

arbitrary nature of a unit. 

 

Results 
 

A content analysis for each student’ response was performed.  Table 1 

summarizes the results for the task included in questionnaire 1. As we can see 

from the table, a majority of the students (about 62%) thought that the shaded 

portion of the diagram could represent (only) ¾.  

Five (about 17%) students thought that that the shaded portion of the 

diagram could represent 3/5. An analysis of their writing responses revealed that 
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all of them thought of the diagram as a complete circle: there are 3 out of 5 

(equal) shaded parts. Five students thought that the shaded portion of the 

diagram could represent either ¾ or 3/5 depending on whether there were 4 or 5 

(equal) parts. One student thought of the diagram representing 3/5 or 4/5 

depending on whether the “missing” part was shaded or not. It is interesting to 

notice that all students justified their responses based on the idea that the unit or 

whole needs to be physically present. 

To gain further insights into prospective elementary teachers’ conceptions 

of the nature of the unit, they were asked to complete questionnaire 2. The 

results of the analysis are displayed in table 2.  

As expected, most of the students (27 or 93%) stated that the shaded 

portion of the diagram could be used to represent ¾. One of the students who 

said “no” wrote that “3/4 doesn’t make a whole according to this figure. The 

answer should be 3/5” while the other drew a circle and shaded ¾ of it arguing 

that this last representation “works better.” 

Regarding whether the shaded portion of the diagram could be used to 

represent 3/5, 17 (59%) responded affirmatively while 11 (38%) students said 

“no” and one wrote “yes and no.” All of the students who said “yes” wrote that 

the circle needs to be completed. None of them conceptualized the shaded 

portion of the diagram as representing 3/5 without the fifth portion being 

physically present. Most of the students who said “no” wrote that there were 

only four parts, 3 of which were shaded. Finally, the student who wrote “yes and 

no” claimed that it depended on whether the “missing” piece was shaded or not: 

If the piece was not shaded then the shaded portion of the diagram would 

represent 3/5, otherwise the shaded portion would represent 4/5.    

As to the third possibility, all students wrote that the shaded portion of the 

diagram could not be used to represent 3/10. The typical explanation was that 

there were only four sections, not 10. Some students wrote that they could get 10 

pieces (by completing the circle and dividing every section into 2 parts), but that 

in this case the shaded portion of the diagram would represent 6/10, not 3/10. 

The fourth task in questionnaire 2 asked students whether the shaded 

portion of the diagram could be used to represent 1 ½. As indicated in table 2, 

most of the students wrote “no” while 7 (about 24%) students responded “yes.” 

One student did not provide a response. To gain a deeper understanding of the 

cognitive processes that students used to respond to the task, we examined their 

written justifications. Here is a typical example of students’ reasoning to justify 

a negative response: “No, there is only 1 figure, so it cannot be > than 1.” It is 

interesting to mention that two of the seven affirmative responses contained 

incorrect explanations. Both justifications used a part to part comparison: 3 

shaded parts to 2 non-shaded parts. A typical correct explanation is the 

following: “Only if each part represents 1/2. In that case there are 3 parts that are 

shaded and 1/2 + 1/2 + 1/2 = 1 ½.”      

In contrast to the case for 1 ½, only 3 (10%) students wrote that the 

shaded portion of the diagram could be used to represent ½. However, the three 

explanations were incorrect because the three students changed the shaded 

portion. For example, one student said that “if two (parts) of this diagram 
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represent 1 then 1 (part) of this diagram would represent ½. A typical 

justification for a negative response was that the shaded portion of the diagram 

was more than ½ shaded.  

The last task asked students a similar question for 1. As displayed in table 

2, 6 (21%) students said that the shaded portion of the given diagram could be 

used to represent 1 whereas 22 (76%) wrote “no”. One student did not provide a 

response. It is interesting to mention that three students wrote “yes if you shade 

all the parts” while one student said “yes, but the empty triangle would have to 

go away.” Only two students provided a correct explanation. One of them wrote 

“yes, only if each part represent (sic) 1/3. In that case, there are 3 parts that are 

shaded and 1/3 + 1/3 + 1/3 = 1.”  

 

Discussion 
 

To respond to the question of what fraction or fractions a shaded 

portion of the given diagram (Fig. 1) could represent, most of the students (62%) 

wrote ¾. This finding is not surprising because the diagram consists of 4 equal 

parts of which 3 are shaded. It is natural to think that the shaded portion 

represents ¾ of the whole: 3 out of 4 (equal) parts are shaded. Also, not 

surprisingly either, some students thought that the diagram could represent 3/5 

assuming automatically that the given diagram was a circle, which they 

completed. It is worthwhile mentioning that all the students conceptualized the 

unit associated to the shaded portion of the diagram as being physically present: 

they could not conceptualize that the shaded portion of the diagram could 

represent ¾ or 3/5 by itself, without the need to have four or five equal parts 

physically present. For example, the diagram could represent ¾ (3/5) square 

units or ¾ (3/5) pounds of cake.  

To further probe prospective elementary teachers’ conscious 

knowledge of the arbitrary nature of the unit associated to a given picture, they 

were asked whether the shaded portion could represent ¾, 3/5, 3/10, 1 ½, ½, and 

1. Almost all students (27 or 93%) answered affirmatively for ¾ while the 

majority (17 or 59%) wrote “yes” for 3/5. Again, those findings are not 

surprising because the given diagram consists of 4 equal parts out of which 3 are 

shaded. All the students who wrote that the shaded portion of the diagram could 

represent 3/5 justified their response by saying that the circle needs to be 

completed. To reiterate, the students were not able to conceptualize that the 

shaded portion of the diagram could represent 3/5 by itself, without the 

“missing” part being present. This interpretation is further supported by the fact 

that none of the students was able to think of a situation for which the shaded 

diagram could represent 3/10. For the picture to represent 3/10, they needed to 

physically see 3 parts out of 10. The students had the three shaded equal parts, 

another non-shaded part, another missing part, but the remaining 5 parts that 

they needed to think of the shaded portion as 3/10 were not physically present. 

The findings for the case ½ further substantiate our interpretation: None of the 

students were able to reconceptualize the three shaded equal parts of the diagram 

as ½ because they did not have physically present the other 2 parts.  
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As shown by the results regarding the cases 1 ½ and 1, the explanation 

that the unit needs to be physically present is not enough to understand our 

findings. In both cases all the parts needed to reconceptualize the shaded portion 

of the diagram as 1 ½ or 1 were physically present. Five students were able 

reconceptualize that the shaded portion of the diagram could be used to 

represent 1 ½ because they saw that each piece could represent ½. Even though 

all the parts to reinterpret the shaded portion of the diagram were physically 

present, the other students were not able to “see” the chunks needed to think of 

the shaded portion as 1 ½. A similar explanation accounts for the fact that only 

two students provided a correct explanation to reconceptualize the shaded 

portion as 1. We contend that these findings can be explained by the idea that 

not all students have completely developed the ability to spontaneously 

reunitize, that is, the capacity to automatically reconceptualize a given quantity 

in different chunks of different sizes.      

In summary, the findings of this study seem to indicate that prospective 

elementary teachers are not able to reconceptualize a given diagram in terms of 

different fractions due to two factors: the referent unit is not physically present 

and their ability to reunitize is underdeveloped. They seem to need instructional 

experiences to expand their conceptions of fractions representing quantities, to 

better understand the arbitrary nature of the unit, and to reconceptualize a given 

quantity in terms of different-sized chunks. We can conclude that further 

research is needed to gain a more profound understanding of teachers’ 

knowledge about the arbitrary nature of the unit within contexts involving 

fractions.     
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�

What fraction or fractions could the shaded part of the figure 

represent? Justify your responses and draw diagrams if 

appropriate.    

�

� �

�

 

Figure 1: Task included in questionnaire 1 
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�

1. Could the shaded part of the following diagram be used 

to represent 
4

3
? Justify your response. If appropriate, 

draw the diagram that represents 1.  

 

  
 

[Similar questions were asked for ,  , 1 , , and 1]  

�

 

Figure 2: Tasks included in questionnaire 2 
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 or  

 

 or  

 

 

Frequency 

(Percentage)  

 

18 (62%) 

 

5 (17%) 

 

5 (17%) 

 

1 (3%) 

Table 1: Results for questionnaire 1 

 

 

 ¾ 3/5 3/10 1 ½ ½ 1 

Yes  27 

(93%) 

17 

(59%) 

0 (0%) 7 (24%) 3 (10%) 6 (21%)  

No 2 (7%) 11 

(38%)  

29 

(100%) 

21 

(72%) 

25 

(86%) 

22 

(76%)  

Yes and 

No 

 1 (3%)     

No 

response 

   1 (3%)  1 (3%)  1 (3%) 

Table 2: Results for tasks included in questionnaire 2 
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