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Abstract 
 

 Basic definitions fundamental to the paper are established. Preliminary 

material concerning the Generalized Product Rule for Derivatives is presented. 

A main theorem is developed which verifies that a polynomial p(x) of degree at 

least 3 with ( ))x(pdeg  distinct real zeros has a unique critical number between 

each consecutive pair of zeros and no other critical numbers. Furthermore, it is 

established that the smallest critical number is closer to the smallest zero than 

the next to smallest zero. Similarly, it is shown that the largest critical number is 

closer to the largest zero than the next to largest zero. 

 

Introduction 

 

 In 1991 Moran posed the problem that if p(x) is a cubic polynomial with 

real zeros { }3

1iia
=

, where 321 aaa << , then p(x) has a critical number c such that 

21 aca <<  and c is nearer to 1a  than 2a  [4, p. 344, Problem 459]. In 1992 

Williams presented a solution to this specific problem [7, p. 345, Problem 459]. 

Waterhouse also produced a solution to this problem for a more general class of 

functions which included polynomials of degree n ≥ 3 with distinct real zeros 

{ }n

1iia
=

, where 1ii aa +<  for 1 ≤ i ≤ n−1 [6, pp. 345-346, Problem 459]. The result 

by Waterhouse generalized that of Williams by showing that polynomials in this 

larger class also have a critical number c with the property that 21 aca <<  and c 

is nearer to 1a  than 2a . This paper will establish that polynomials such as those 

included in the result by Waterhouse have a unique critical number ic ∈ ( )1ii a,a +  

for 1 ≤ i ≤ n−1 and no other critical numbers. Furthermore, the result by 

Waterhouse is verified by using a different approach than Waterhouse to show 

that the smallest critical number 1c  is nearer to 1a  than 2a . Finally, a 

symmetrical fact involving the largest critical number 1nc −  is then established by 

showing that 1nc −  is nearer to na  than 1na − . 

 

Preliminary Results 

 

 Suppose that f(x) is a real valued function of a real variable and c is a real 

number. Using the standard definition, c is a critical number (or critical value) of 

f(x) if and only if c is in the domain of f(x) and either )c(f ′  = 0 or )c(f ′  is 

undefined. If c is a critical number of f(x), then the ordered pair ( ))c(f,c  is a 

critical point of f(x). In particular, since any polynomial is both defined and 
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differentiable at x for each real number x, then c is a critical number of a 

polynomial p(x) if and only if )c(p′  = 0. 

 The Product Rule for derivatives appears in various forms of generality. 

Most commonly, beginning calculus students are presented with the familiar 

formula for the derivative of the product of two differentiable functions which 

states that  

 

)x(g)x(f
dx

d
⋅  = )x(g

dx

d
)x(f)x(f

dx

d
)x(g ⋅+⋅ , 

 

or  

 

( ) )x(fg
′

 = )x(g)x(f)x(g)x(f ′+′  

 

[5, p. 185]. Some texts extend the basic result for two functions to the formula  

 

( ) )x(fgh
′

 = )x(h)x(g)x(f)x(h)x(g)x(f)x(h)x(g)x(f ′+′+′  

 

[2, p. 145, no. 40] for the derivative of the product of three differentiable 

functions. Still others extend the basic result to the product of four differentiable 

functions, stating that  

 

( ) )x(fghk
′

 = 

)x(k)x(h)x(g)x(f)x(k)x(h)x(g)x(f)x(k)x(h)x(g)x(f)x(k)x(h)x(g)x(f ′+′+′+′

 

 

[3, p. 168, no. 40]. However, the Generalized Product Rule for Derivatives 

extends this fundamental principle to the arbitrary finite product of differentiable 

functions. 

 

Generalized Product Rule for Derivatives: Suppose n is a positive integer, 

)x(fk  is a differentiable function for 1 ≤ k ≤ n, and f(x) = ∏
=

n

1k

k )x(f . Then  

 

)x(f ′  = ∑ ∏
= ≠









⋅

′
n

1i ik

ki )x(f)x(f . 

 

In other words, if f(x) = )x(f)x(f)x(f)x(f n1n21 ⋅⋅⋅⋅ −L , then  

 

)x(f ′  = )x(f)x(f)x(f n21 ⋅⋅⋅
′

L  ++L  )x(f)x(f)x(f n1n1

′
⋅⋅⋅ −L  
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[1, p. 187, Corollary 6.1.4]. 

 

Main Result 
 

 We are now prepared to present the main result of the paper. It is shown 

that if p(x) is a polynomial, ( ))x(pdeg  = n ≥ 3, and p(x) has distinct real zeros 

n21 aaa <<< L , then p(x) has a complete set { } 1n

1iic
−

=
 of critical numbers such 

that 1iii aca +<<  for 1 ≤ i ≤ n−1. Furthermore, it is verified that the smallest 

critical number 1c  is nearer to the smallest zero 1a  than it is to the next larger 

zero 2a . Finally, a form of symmetry is established by also showing that the 

largest critical number 1nc −  is nearer to the largest zero na  than it is to the next 

smaller zero 1na − . 

 

Theorem: Suppose that p(x) is a polynomial of degree n ≥ 3 containing n 

distinct real zeros { }n

1iia
=

, where 1ii aa +<  for 1 ≤ i ≤ n−1.  

(a) Then p(x) has a complete set { } 1n

1iic
−

=
 of precisely n−1 critical numbers  

 which have the property that ic ∈ ( )1ii a,a +  for 1 ≤ i ≤ n−1. 

(b) Furthermore, 1c  is nearer to 1a  than 2a . 

(c) Similarly, 1nc −  is nearer to na  than 1na − . 

 

Proof: Suppose p(x) is a polynomial, ( ))x(pdeg  = n ≥ 3, p(x) has real zeros 

{ }n

1iia
=

, and 1ii aa +<  for 1 ≤ i ≤ n−1. Consequently, if p(x) has leading 

coefficient r, then p(x) = ( )∏
=

−⋅
n

1k

kaxr , where r ≠ 0. 

 

(a) Since ( ))x(pdeg  = n then ( ))x(pdeg ′  = n−1. Furthermore, the critical 

numbers of p(x) are the zeros of )x(p′ . Thus p(x) has at most ( ))x(pdeg ′  = n−1 

distinct critical numbers. However, since p(x) has distinct real zeros { }n

1iia
=

 with 

the property that 1ii aa +<  for 1 ≤ i ≤ n−1, then by Rolle’s Theorem p(x) has at 

least n−1 distinct critical numbers { } 1n

1iic
−

=
, where ic ∈ ( )1ii a,a +  for 1 ≤ i ≤ n−1. 

Consequently { } 1n

1iic
−

=
 is the complete set of critical numbers of p(x), where 

ic ∈ ( )1ii a,a +  for 1 ≤ i ≤ n−1. In particular, p(x) has critical numbers 1c ∈ ( )21 a,a  

and 1nc − ∈ ( )n1n a,a − . 

 

(b) Define 1d  and 2d  to be the distances from 1c  to 1a  and 2a , respectively. 

Since 1a  < 1c  < 2a , then 1d  = 1c − 1a  and 2d  = 2a − 1c . 
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 Now define q(x) = ( )∏
=

−
n

3k

kax . Since n = ( ))x(pdeg  ≥ 3, it follows that 

( ))x(qdeg  ≥ 1 and p(x) = ( )( ) )x(qaxaxr 21 −− . Therefore  

 

)x(p′  = ( ) ( ) ( )( )[ ])x(qaxax)x(qax)x(qaxr 2112
′−−+−+−  

 

by the Generalized Product Rule for Derivatives. Since 1c  is a critical number 

of p(x) then  

 

0 = ( )1cp′  = 

 

( ) ( ) ( ) ( ) ( )( ) ( )[ ]12111111121 cqacaccqaccqacr ′−−+−+− . 

 

On the other hand, since { }n

1iia
=

 is the complete set of zeros of p(x), 1ii aa +<  for 

1 ≤ i ≤ n−1, and 1a  < 1c  < 2a , then ( )1cp  ≠ 0. Therefore  

 

0 = 
( )
( )1

1

cp

cp′
 = 

 

( ) ( ) ( ) ( ) ( )( ) ( )[ ]
( )( ) ( )12111

12111111121

cqacacr

cqacaccqaccqacr

−−

′−−+−+−
 = 

 

11 ac

1

−
 + 

21 ac

1

−
 + 

( )
( )1

1

cq

cq′
 = 

 

1d

1
 − 

2d

1
 + 

( )
( )1

1

cq

cq′
, 

 

and so 
2d

1
 − 

1d

1
 = 

( )
( )1

1

cq

cq′
. 

 Note that ( )1cq  = ( )∏
=

−
n

3k

k1 ac . Applying the Generalized Product Rule 

for Derivatives again, we have ( )1cq′  = ( )∑ ∏
=

≠
= 















−

n

3i

n

ik
3k

k1 ac . Therefore  

 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 9 No. 1      5 

2d

1
 − 

1d

1
 = 

( )
( )1

1

cq

cq′
 = 

( )

( )∏

∑ ∏

=

=
≠
=

−
















−

n

3k

k1

n

3i

n

ik
3k

k1

ac

ac

 = 

 

( )

( )∏

∏

=

≠
=

−

−

n

3k

k1

n

3k
3k

k1

ac

ac

 + 

( )

( )∏

∏

=

≠
=

−

−

n

3k

k1

n

4k
3k

k1

ac

ac

++L

( )

( )∏

∏

=

≠
=

−

−

n

3k

k1

n

nk
3k

k1

ac

ac

 = 

 

31 ac

1

−
+

41 ac

1

−
++L

n1 ac

1

−
 = 

 

∑
=










−

n

3i i1 ac

1
. 

 

 Since 1c ∈ ( )21 a,a  and 1ii aa +<  for 1 ≤ i ≤ n−1, it follows that 1c  < ia  for 

3 ≤ i ≤ n, and so 
i1 ac

1

−
 < 0 for 3 ≤ i ≤ n. Thus 

2d

1
 − 

1d

1
 = ∑

=










−

n

3i i1 ac

1
 < 0, so 

that 1d  < 2d . Hence 1c  is nearer to 1a  than 2a . 

 

(c) Following a strategy similar to that of part (b), we define 3d  and 4d  to be 

the distances from 1nc −  to 1na −  and na , respectively. Since 1na −  < 1nc −  < na , 

then 3d  = 1nc − − 1na −  and 4d  = na − 1nc − . 

 Now define Q(x) = ( )∏
−

=

−
2n

1k

kax . Since n = ( ))x(pdeg  ≥ 3, it follows that 

( ))x(Qdeg  ≥ 1 and p(x) = ( )( )n1n axax)x(Qr −− − . Therefore  

 

)x(p′  = ( )( ) ( ) ( )[ ]1nnn1n ax)x(Qax)x(Qaxax)x(Qr −− −+−+−−′  

 

by the Generalized Product Rule for Derivatives. Since 1nc −  is a critical number 

of p(x) then  

 

0 = ( )1ncp −
′  = 

 

( )( ) ( ) ( )[ ]1n1n1nn1n1nn1n1n1n1n ac)c(Qac)c(Qacac)c(Qr −−−−−−−−− −+−+−−′ . 
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On the other hand, since { }n

1iia
=

 is the complete set of zeros of p(x), 1ii aa +<  for 

1 ≤ i ≤ n−1, and 1na −  < 1nc −  < na , then ( )1ncp −  ≠ 0. Therefore  

 

0 = 
( )
( )1n

1n

cp

cp

−

−
′

 = 

 

( )( )( ) ( )( ) ( )( )[ ]
( )( )( )n1n1n1n1n

1n1n1nn1n1nn1n1n1n1n

acaccQr

accQaccQacaccQr

−−

−+−+−−′

−−−−

−−−−−−−−−  = 

 

( )
( )1n

1n

cQ

cQ

−

−
′

 + 
1n1n ac

1

−− −
 + 

n1n ac

1

−−

 = 

 

( )
( )1n

1n

cQ

cQ

−

−
′

 + 
3d

1
 − 

4d

1
, 

 

and so 
4d

1
 − 

3d

1
 = 

( )
( )1n

1n

cQ

cQ

−

−
′

. 

 Note that ( )1ncQ −  = ( )∏
−

=

− −
2n

1k

k1n ac . Applying the Generalized Product 

Rule for Derivatives again, we have ( )1ncQ −
′  = ( )∑ ∏

−

=

−

≠
=

−
















−

2n

1i

2n

ik
1k

k1n ac . Therefore  

 

4d

1
 − 

3d

1
 = 

( )
( )1n

1n

cQ

cQ

−

−
′

 = 

( )

( )∏

∑ ∏

−

=

−

−

=

−

≠
=

−

−
















−

2n

1k

k1n

2n

1i

2n

ik
1k

k1n

ac

ac

 = 

 

( )

( )∏

∏

−

=

−

−

≠
=

−

−

−

2n

1k

k1n

2n

1k
1k

k1n

ac

ac

 + 

( )

( )∏

∏

−

=

−

−

≠
=

−

−

−

2n

1k

k1n

2n

2k
1k

k1n

ac

ac

++L

( )

( )∏

∏

−

=

−

−

−≠
=

−

−

−

2n

1k

k1n

2n

2nk
1k

k1n

ac

ac

 = 

 

11n ac

1

−−

+
21n ac

1

−−

++L
2n1n ac

1

−− −
 = 
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∑
−

= −










−

2n

1i i1n ac

1
. 

 

 Similar to part (b), since 1nc − ∈ ( )n1n a,a −  and 1ii aa +<  for 1 ≤ i ≤ n−1, 

then 1nc −  > ia  for 1 ≤ i ≤ n−2, and so 
i1n ac

1

−−

 > 0 for 1 ≤ i ≤ n−2. Therefore 

4d

1
 − 

3d

1
 = ∑

−

= −










−

2n

1i i1n ac

1
 > 0, so that 3d  > 4d . Hence 1nc −  is nearer to na  

than 1na − . 

 

Concluding Remarks 

 

 The main theorem generalizes the problem posed by Moran [4] in two 

ways. By specifying that ( ))x(pdeg  ≥ 3, the problem posed by Moran for cubic 

polynomials is simply the special case in which ( ))x(pdeg  = 3. Furthermore, in 

addition to showing that the smallest critical number 1c  of p(x) is closer to the 

smallest zero 1a  than the next to smallest zero 2a , a symmetrical relationship is 

established by showing that the largest critical number 1nc −  of p(x) is closer to 

the largest zero na  than the next to largest zero 1na − . Finally, even though 

Waterhouse provided the solution for the critical number 1c ∈ ( )21 a,a  in the 

more general case in which ( ))x(pdeg  ≥ 3 [6, pp. 345-346, Problem 459], his 

solution did not include the symmetrical result for 1nc − ∈ ( )n1n a,a − . 

 

† Richard Winton, Ph.D., Tarleton State University, Texas, USA 
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