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Abstract 

 

 Extension posed a serious mathematical problem in functional analysis 

until Hahn and Banach came up with the efficient Hahn-Banach theorem for 

extension of functionals in Banach space. Subsequently other extension results 

have continued to evolve even in topology and functional analysis. In section 

two of this work, the basics of these results were considered precisely as 

theorems and propositions. These strongly gave rise to the background of the 

applications considered in this work as in section three.  

 

1. INTRODUCTION 

 Knowing that a linear function on a vector space X is a linear operator 

from X to the space ℜ of real numbers and that a linear functional is a real 

valued function on X such that f(α x + by) = αf(x) + bf(y), we then ask a first 

question on how we can extend a linear operator (or functional) from such a 

space to the whole space X in such a way that the various properties of the 

functional are preserved. In view of this, a fundamental extension theorem, the 

Hahn- Banach theorem and its consequent corollaries preliminarily came into 

play extensively in section two, the next section. 

As second question, we assume that the function g is given for only a subset X 

of the real space, C, can we extend X so as to define a linear functional g of 

norm Mg ≤ M in the entire space C. In view of this, an evident necessary 

condition is that 

for all linear combinations of elements of X, we have      
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If we let Mg to be the smallest value of M for which (1.1) is fulfilled, we observe 

that condition (1.1) becomes a sufficient condition for answer to the above 

immediate question. 

 

2. PRELIMINARY RESULTS ON EXTENSION 

Theorem 2.1: (Hahn-Banach): let p be a real- valued function defined a vector 

space X satisfying p(x+y) ≤ p(x) + p(y) and p(αx) = αp(x) for each α ≥ 0. 

Suppose that f is a linear functional defined on a subspace S and that f(s) ≤ p(s) 

for all s in S. then there is a linear functional f defined on X such that f(x) ≤ p(x) 

for all x, and f(s) = f(s) for all s in S. 

 

Proof: Consider all liner functional g defined on a subspace of X and satisfying 

g(x) ≤ p(x) Whenever g(x) is defined. This set is partially ordered by setting g1 < 

g2 if g2 is an extension of g1, that is, if the domain of g1is contained in the 

domain of g2 and g1 = g2 of the domain of g1. 

 By the Hausdorff Maximal Principle there is a maximal linearly 

ordered subfamily {gα} that contains the given functional f. We define a 

functional which is independent of the α chosen. The domain of f is a subspace 

and f is a linear functional, for if x and y are in the domain of f. then x∈domain 

gα and y ∈ domain gβ for some α, β. By the linear ordering of {gα}, we have 

either gα< gβ or gβ < gα, say the former. Then x and y are in the domain of gβ, 

and so λx + µy is in the domain of gβ  and so in the domain of f, and f (λx+µy) = 

gβ (λx+µy) =λgβ(x) + µgβ(y) = λf(x) + µf(y). Thus f is an extension of f. 

Moreover, f is a maximal extension for if G is any extension of f, gα < f< G 

implies that G must belong to (gα) by the maximality of (gα). Hence G < f, and 

so G = f. 

 It remains only to show that f is defined for all x ∈ X. since f is 

maximal. This will follow if we can show that each g that is defined on a proper 

subspace T of X and satisfies g(t) ≤ p(t) has a proper extension h. 
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 Let y be an element in X ∼T. we shall show that g may be extended to 

the subspace U spanned by T and y, that is, to the subspace consisting of 

elements of the form λy + t with t ∈ T. if h is an extension of g, we must have 

h(λy + t) = λh(y) + h(t) = λh(y) + g(t), 

and so h is defined as soon as we specify h(y). 

for t1, t2, ∈T we have 

g(t1) + g(t2) = g(t1 + t2) ≤ p(t1+t2)≤ p(t1-y) + p(t2-y). Hence 

-p(t1-y) + g(t1) ≤ p(t2+y)-g(t2), and so  

[ ] [ ].)()(inf)()(sup tgytptgytp
TtTt

−+≤+−−
εε

 

Define h(y) = α, where α is a real number such that sup{-p(t-y) + g(t)}≤ α ≤ inf 

[p(t+y)-g(t). we must show that  h(λy+t) = λα+g(t) ≤ p(λy + t). 

if λ > 0, then λα + g(t) =λ{α + g(t/λ)}. ≤ λ =λ [{p(t/λ + y)-g(t/λ)} + g(t/λ)] 

= λp(t/λ+ y) = p(t + λy). if λ = - µ < 0, 

 then  α µ + g(t) = µ( - α + g(t/µ))  ≤ µ ({p(t/µ - y) – g(t/µ)} + g(t/µ)) 

= µp( t/µ -y) = p(t = µy). 

Thus h(λy + t) ≤ p(λy + t) for all λ, and h is a proper extension of g. 

 The following proposition is a generalization of the Hahn- Banach 

Theorem which is useful in certain applications. By an Abelian semigroup of 

linear operators on a vector space X, we mean a collection G of linear operators 

from X to X such that of A and B are in G, then AB = BA and AB is in G. we 

also assume that the identity operator belongs to G. 

 

Proposition 2.1:  let x, s, p, and f be as in Theorem 2.1, and let G be all Abelian 

semigroup of linear operators on X such that for every A in G we have p(Ax) ≤ 

p(x) for all x in X, while for each s in S we have As  in S and f(As) = f(s). then 

there is an extension f of F to a linear functional on X such that f (x) ≤  p(x) and 

F(Ax) for all x in X [10] 

 

Proof: define a function q on X by setting 
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q(x) = inf p
nm

1
(A1x +…..+Anx), 

Where the inf is taken over all finite sequences {A1,...An} from G. 

we clearly have q(x) ≤ p(x)  and q(αx) = αq(x) for α ≥ 0. for any x and y in X 

and any pairs {A1,...An} and {B1,…Bm} of finite sequences from G we have 
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Taking infima over every pair {Ai}, {Bj}, we obtain 

q(x + y) ≤ q(x) + q(y). 

Since q(θ) = p(θ) = 0, we have 

 0 = q(x-x) ≤ q(x) + q(-x)    ≤ q(x) + p(-x) 

 Thus q(x) cannot be - ∞, and q is real valued. 

For s in S, 

 ).....(
1

).....(
1

)( 11 sAsAp
n

sAsAf
n

sf nn ++≤++=  

Hence f(s) ≤ q(s), and we may apply Theorem 2.1 with p replaced by q to obtain 

an extension f of  F to all z such that f(x) ≤ q(x) ≤ p(x). it remains only to show 

that f(Ax) = f(x). Now  q(x-Ax) ≤ 

))(.....)()((
1

AxxAAxxAAxxp
n

n −++−+−  

 )].()([
1

)(
1 1

xpxp
n

xAxp
n

n −+≤−= +
    

Since this is true for each n, we have q(x-Ax) ≤ 0. since f(x) – f(Ax) = f(x-Ax) ≤ 

q(x-Ax) ≤ 0, 

we have f(Ax), and applying this to –x, we get f(x) = f(Ax). 
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Proposition 2.2:  let x be an element in a normed vector space X. 

Then there is a bounded linear functional f on X such that f(x) = ||f|| ||x||. [3] 

 

Proof:  let S be the subspace consisting of all multiples of x, and define f on S 

by f(λx) = λ|| x ||  and set p(y) = || y||. Then by the Hahn – Banach Theorem there 

is an extension of f to be a linear functional on X such that f(y) ≤ ||y||. Since f(-y) 

≤ ||y|, we have ||f|| ≤ 1. Also f(x) = ||x|| ≤ ||f||. ||x||. Thus ||f|| =1 and f(x) = ||f||. || x||. 

 

Proposition 2.3:  let T be a linear subspace of a normed linear space X and Y  

Element of X whose distance to T is at least δ, that is, and element such that || y 

–t|| ≥ δ for all t ε T. then there is a bounded linear functional f on x with ||f|| ≤ 1, 

f(y) = δ, and such that f(t) = 0 for all t in T. [5] 

 

Proof:  let S be the subspace spanned by T and y, that is, the subspace 

consisting of all elements of the form αy + t with t ε T. 

Define f(αy + t) = αδ, we have f(s) ≤ || s|| on S. by the Hahn – Banach Theorem 

we may extend f to all of X so that f(x) ≤ ||x||. But this implies that ||f|| ≤ 1. By 

the definition of f on S, we have f(t) = 0 for t ∈ T and f(y) = δ. 

 

       The space of bounded linear functional on a normed space X is called the 

dual (or conjugate) of X and is denoted by X
*
. Since R is complete, the dual X

* 

of any normed space X is a Banach space by Proposition 2.3. Two normed 

vector spaces are said to be isometrically isomorphic if there is a one to one 

linear mapping of one of them into the other which preserves norms. From an 

abstract point of view, isometically isomorphic spaces are identical, the 

isomorphism merely amounting to a refinent of the elements. I suppose we 

know that the dual of L
P
 was (isometrically isomorphic to) Lq for 1≤ p < ∞ and 

that there was a natural representation of the bounded linear functional on Lp by 

elements of Lq. 

       We are now in a position to show that a similar representation does not hold 

for bounded linear functional on L
∞
[0,1]. We note that C[0,1] is a closed 
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subspace of L
∞
[0,1]. Let f be that linear functional on C[0,1] which assigns to 

each x in C[0,1} the value x(0) of X at 0. It has norm 1 on C, and so can be 

extended to a bounded linear functional f on L
∞
[0,1].   

Linear functional and Hahn-Banach Theorem 

Given L
1
[0,1] such that f(x) = xy∫

1

0
 dt for all x in C, let {xn} be a sequence of 

continuous functions on [0,1] that are bounded by 1, we have xn(0) = 1, and  

such that xn(t) → 0 for all t ≠ 0. Then, for each  

∫ =→∈ .1)(,0,1

nn xfwhiledxyxLy         

         If we consider the dual x** of x*, then to each x in X, there corresponds an 

element ϕx in x** defined by (ϕx)(f) = f(x). We have ||x|| = sup f(x). Since f(x) 

≤ ||f|| ||x||, we have ||ϕx|| ≤ ||x||, ||f|| =1. 

        While by proposition 2.2 we have an f of norm 1 with f(x) = ||x||. 

Hence ||ϕx|| = ||x||. Since  ϕ  is clearly a linear mapping, ϕ is an isometric 

isomorphism of x onto some linear subspace ϕ [x] of x**. The mapping ϕ  is 

called the natural isomorphism of x onto x**, and if ϕ[x] = x** we say that x is 

reflexive. 

       Thus Lp is reflexive if 1 < p < ∞. Since there are functionals on L
∞
 that are 

not given by integration with respect to a function on 1l L
1
, it follows that L

1
 is 

not reflexive. It should be observed that x may be isometric with x** without 

being reflexive. 

         By Proposition 2.3, the space x** is complete, and so the closure ϕ[x] 

vector space is isometrically isomorphic to a dense subset of a Banach space. 

         Before closing this section, we add a word about the Hahn –Banach 

Theorem for complex vector spaces. A complex vector space is a vector space in 

which we allow multiplication by complex scalars. The following extension of 

the Hahn-Banach Theorem for complex spaces is due to Bohnenblust and 

Sobczyk: 
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Theorem 2.2: let X be a complex vector space, S a linear subspace, p a real – 

valued function on X such that p(x+y) ≤ p(x) +p(y), and p(αx) = |α|p(x). let f be 

a (complex) linear functional on S such that |f(s)| ≤ p(s) for all s in S. Then there 

is a linear functional f defined on x such that f(s) = f(s) for s in S and |f(x)| ≤ p(x) 

for all x in X. [6] 

 

Proof: we first note that x can be considered as a real vector space if we simply 

ignore the possibility of multiplying by complex constants. A mapping f from X 

to the complex numbers that is linear in the real sense is linear in the complex 

sense if an only if f(ix) = if(x) for each x. on S define g and h by taking g(s) to 

be the real part of f(s) and h(s) the imaginary part. Then g and h are linear in the 

real sense and f = f + ih. Since f is linear in the complex sense, g(is) + ih(is) = 

f(s) = ig(s) – h(s), and so h(s) = - g(is). 

         Since g(s) ≤| f(s)| ≤ p(s), we can extend g to a functional g on X that is 

linear in the real sense and satisfies G(x) ≤ p(x). let F(x) = G(x) – iG(ix). Then 

F(s) for s in S. since F(ix) = G(ix) –iG(ix) = i[G(x) – iG(ix)], we have F linear in 

the complex sense. For any X, choose ω to be a complex umber such that |ω| = 1 

and ωF(x) = |F(x)|. Then |F(x)| = ωF(x) = F(ω x) = G(ωx) ≤ p(ωx) = p(x). 

 

3.         APPLICATIONS 

3. 1.     THE DIRICHLET PROBLEM 

If Ω  be a bounded domain in R
n
 and let ∑

=

∂∂=∆
n

j

jx
1

22 ./ .the equation 

su ∂=∆  called the Laplace equation. Any function in )(2 ΩC  that satisfies 

the Laplace equation in Ω  is called a harmonic function in Ω . We shall denote 

by Ω∂  the boundary of Ω . We say that Ω∂   is in C
2
 if Ω∂  can be covered 

by a finite number of open subsets Gi, with each Ω∂IiG  having a parametric 
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representation in terms of functions in 
2

C . The Dirichlet is the following one: 

given a continuous function Ω∂onf  continuous in 
−

Ω , and satisfying 

)2.1.3(...

)1.1.3(...,0

fu

inu

=

Ω=∆

 

Theorem 3.1.1  The Dirichlet problem has at most one solution. 

This follows immediately from the following result, known as the (weak) 

maximum principle. 

Theorem 3.1.2 Let u be a harmonic function in Ω , continuous in 
−

Ω . 

Then 
Ω∂

Ω
−

= uu maxmax [2] 

Proof. If the assertion is not true, then there is a point Ω∈y  such that 

.max)(
Ω∂

> uyu  consider the function 0.||)()( 2 >−+= εε ifyxxuxv  is 

sufficiently small, then 
Ω∂

>= vyuyv max)()(  is attained at a point z in Ω . At 

the point, 

                ( )ni
x

v

x

v

i

,...10,0
2

1

2

=≤
∂

∂
=

∂
∂

 

Hence zatv 0≤∆ .however, 

( ) 02|| 2 >=−∆+∆=∆ εε nyzuv  a contradiction as for the existence of a 

solution to the Dirichlet problem, we quote the following result: 

Theorem 3.1.3 If  Ω∂ is in C
2
, then for any continuous function f on Ω∂  there 

exists a solution to the Dirichlet problem (3.1.1), 3.1.2). [2] 

 Theorem 3.1..3 Is much deeper than Theorem 3.1.1. There are various methods 

of providing it, but each of them requires lengthy developments. Consider now 

the function 
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We call it a fundamental solution of the Laplace equation. It satisfies the 

Laplace equation in x, when x varies in },{y−Ω  and it grows to ∞  as 

yx → . [7] 

Definition 3.1.1 A function ),,( yxG  defined for each 

),( yxandy −Ω∈Ω∈
−

 is called Green’s function (for the Laplace operator 

in Ω ) if: 

( ) ),(),,(),(),( yxhwhereyxhyxkyxGi += is harmonic in x 

when Ω∈x  

( ) ),( yxGii  is continuous in x when ].[yx −Ω∈  

( ) .0),( Ω∂∈= xforyxGiii [2] 

 One can use Green’s function in order to represent the solution u of the 

Dirichlet problem (3.1.1), (3.1.2) in terms of an integral involving the boundary 

values f . What we shall now do is construct Green’s function by using, as a 

tool, the Hahn-Banach theorem. We shall consider only the case n = 2, which is 

somewhat simpler than the case where .3≥n we shall assume that Ω∂  

consists of a definite number of continuously differentiable closed curves. The 

following condition then holds (the proof is omitted): 

(P) For any z near Ω∂ , denote by T= the tangent plane to Ω∂  at the point on 

Ω∂  nearest to z. denote by z’ the reflection of z with respect to T= 

then 
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Ω∂∈→→
−

−
Ω∂∈

00 ,1
'

max zzzif
xz

xz

x
 

Theorem 3.1.4  if 2=n  and Ω∂  is in C
1
, then Green’s function exists. 

Proof. Denote by x the Banach space of all continuous functions on Ω∂  with 

the maximum norm, and denote by x’ the linear subspace consisting of those 

functions f for which the Dirichlet problem (3.1.1), (3.1.2) has a solution. For an 

Ω∈y , consider the linear functional Ly on X’ defined by Ly(f) = u(y), where u 

is the solution of (3.1.1), (3.1.2). From Theorem 3.1.2 it follows that Ly is 

bounded and that its norm is 1. 

     By the Hahn- Banach theorem Ly can be extended into a bounded linear 

functional on X, having norm 1. We denote such an extension again by Ly. 

 For each Ω∂∉z  consider the element 

)(||log)( Ω∂∈−= xzxxf z  and define )()( zyy fLzk = . We 

claim that )(zk y is a harmonic function. To prove it let 








 −
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−
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δδ

δ
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yy ff
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zkzk
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).,(' 21

 

As 11 /,//)(,0 zfwherezfff zzzz ∂∂∂∂→→→ δδ  is the 

elements 1/|)|(log zxx ∂−∂  of x. since Ly is a continuous operator on X, we 

get 

1

)(

z

zk y

∂

∂
 exists and equals 









∂

∂

1z

fz
Ly  

3.2.    SPACES OF POLYNOMIALS 

3.2.1     Introduction 

We know that ordinarily it is impossible to extend scalar valued continuous 

homogenous polynomials over a larger Banach space using the popular Hahn-
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Banach theorem unless by the use of a more rigorous but a stronger approach 

which involves to an extent the use of an ultra power method which can be 

related to the existence of such extension morphism by complementing X** in 

G** in f: G →X* when a = X**. This is just exactly the same as the existence of 

a linear extension morphism for continuous homogenous polynomial p(
k
F) 

→p(
k
G) and our interest is the perfect Hahn-Banach type extension with 

sufficient  condition for the existence of each p and not a linear morphism that 

will extend all of them. We do this by identifying polynomials more so, we 

know that the space p(
k
X) of K- homogenous polynomials over a Banach space 

X is the dual space of the space of symmetric kitensor of elements of X with the 

projective topology p(
k
X) being the dual of a space spanned by evaluations. 

           Normed with linear functional suit that we use Hahn- Banach theorem to 

extend them. 

We consider the following before we deliver into the main application. Given an 

element x∈X, at x
i
 is a continuous linear form over the space of K-homogenous 

polynomials we denote the evaluation morphism by e. The norm of ex as an 

element of p(
k
X) ‘ is ||x||

k
. denoted by S the linear subspace of p(

k
X) ‘ spanned 

by all evaluations at points of X. This is a (non-closed) subspace whose 

elements have non- unique representations of the form  ∑
=

=
n

j

xjes
1

,  

For complex X the norm of such an element is 









∈= ∑
=

onenormofXPPxjPs
k

n

j

)(|:)(|sup
1

  

which is independent of the representation of s. When x is a real Banach space 

and k is even, the representation must take into account the signs, so s = 

∑∑ =−
−

m

i yi
xj

n

j
ee

1 .1
as our results are valid for both the real and complex case, 

but we will use only the complex-case notation. Note also that for any scalar λ, 

eλx = λk
ex. The dual of s can be readily seen to be p(

k
X) . 
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We will need to consider other topologies on the vector space s. we know from 

|14| that the Borel transform B: p(
k
X)’→ p(

k
X’) is the linear map given  by B(T)  

(γk
). A linear form T is the kernel of the B if and only if T is zero over the space 

of approximable polynomials. Since generally not all polynomials are 

approximable, B is rarely one to one. However, the following lemma assures 

that when restricted to the space S, the Borel transform is always one-to-one.                                   

Lemma[3.2.1]: letx1,...,xn, ∈x if 

( ) ( ) ).(0,'  0
11

xPPallforxpthenxallforx
k

j

n

j

k

j

n

j
∈=∈= ∑∑ ==

γγ  

p(
k
X)’. 

Proposition 3.2.1:  S’ is isometrically isomorphic to P1(
k
X). 

Note that an immediate consequence of the proposition is that the image of the 

Borel Map p: P(
k
x)’ → P(

k
x’) is the space of integral k-homogeneous 

polynomials over 

x’. Although we are mainly concerned with integral polynomials, we will take 

the 

mapping T ↔ PT where PT(x)=T(ex) (as in theorem), is an isomorphism between 

the algebraic dual of S and the space of all (not necessarily continuous) k-

homogeneous polynomials over X (we will denote its reverse P → Tp). 

Imposing more or less stringent continuity conditions on T will produce 

different kinds of polynomials. Hence we show that all spaces of polynomials 

are produced in this way. 

Proposition 3.2:1 If Z is any subspace of P(
k
x) containing the finite type 

polynomials, Z is (algebraically) isomorphic to (s,τ)’, where T is a Hausdorff 

convex topology on S. 

 

1.  Extension Of Polynomials 

 In this section, we consider the problem of extending a polynomial defined on a 

Banach space X to a larger Banach space Y. thus, we will use the “linearization 

of different types of polynomials presented in section 3.1 in conjunction with the 

Hahn-Banach extension theorem for locally convex, to produce extensions of 
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polynomials. We will identify in this section the linear functional TP with the 

polynomial P. thus we may write P∈ (s,τ)’. 

         Denote with SX and SY the spaces spanned, as in the proceeding section, by 

evaluations in points of X and of Y. respectively. Then the inclusion map τ from 

X to Y induces a map from SX to SY. 

                       ∑ ∑
= =

→
n

j

n

j

xjxj ee
1 1

),(τ  

Which is one-to-one, thanks to the Lemma in section 3.1, and the Hahn-Banach 

theorem. Indeed, if 0
1 )( =∑ =

n

j x j
eτ  in SX, and γ ∈ X’, then extend γ to Γ ε Y’, 

and we have 

                     0)()(
1

(

1
)

=Γ








=










∑∑

==

n

j

x

n

j

xj j
ee τγ , for any γ ∈ X’.  

Thus ∑ =
=

n

j xje
1

.0 we will drop the τ in the sequel and consider any s ∈ SX an 

element of SY. 

         Note that any P ∈ (SX)* the algebraic dual of SX extends to SY, so any 

polynomial can be algebraically extended; the real question is what type of 

polynomial we can expect this extension to be. Now consider locally convex, 

Hausdorff topologies τx and τy on SX and Sy. Then the following proposition is 

immediate. 

 

Proposition 3.2.1:  given the spaces (Sx, τy)’ and (Sy τy)’ of polynomial over X 

and Y respectively, then a polynomial P ∈ (SX, τx)’ extends to a polynomials (Sy, 

τy)’ if it is τG-continuous (i.e. for the topology induced by τy on Sx). [12] 

 We now extend integral; polynomials over E to integral polynomials 

over an arbitrary larger space X. 

Theorem:  Any P ∈ PI(
k
E) can be extended to P

(
∈ PI(

k
G), with || P

(
||I = ||P||I 

[14]. 

Corollary 3.2.1:  There is an extendible, non- integral polynomial over co. [12] 
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 To see this, consider a non- weakly compact symmetric operator T: 

1l →l∞, and consider the inclusion 1l  ⊂ C([0,1]). T corresponds to a 2-

homogeneous polynomial P over 1l , and its extension to C([0,1]) would give 

rise to a continuous symmetric operator S: C ([0,1]) → C ([0,1]) making the 

following diagram commutative. 

                      

])'1,0([])1,0([

'

1

CC

JJ

s

T

→

↑↓

→ ∞ll

 

But this can not be, for the symmetric regularity of C ([0,1]) assures the weak 

compactness of S, and thus  of T. [16] 

 Many sub-classes (finite-type, nuclear) of integral polynomials over E 

can of course be extended to the corresponding kind of polynomial over G. we 

next state this kind of correspondence for polynomials in (SE,τ0)’. 

Proposition 3.2.1:  each P ∈ (SE,τ0)’ extends to P ∈ (SG,τ0); [13]. 

 

Applying these to the integral polynomial, we know that according to Aron and 

Berner, any continuous homogenous polynomial can be extended from X to X’ 

which indicates that extension is in fact purely algebraies in nature and cannot 

be applied to any polynomial contributions hence we verify that P is nuclear 

polynomial over X. then its Aron-Berner extension P is also nuclear. In fact, if P 

= ΣI γ, then P = ΣI  with γ = j(γ) where j X’ →X’ is the canonical inclusion if P is 

integral and µ is a regular Borel  on BE representing P. then one is tempted to 

put for λ ∈ X’. 

                              ( )γµγ dzzP
k

BX

)()( ∫=  

 where as the only problem with this expression is that this integral may not 

exist. In fact z
k
 need not be a µ- measurable function. Note that z

k
 is not a 
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continuous function on (BE’w*), nor is the point wise limit of a sequence of 

powers of elements of E (which are known to be integrable). [1] 

 We will prove that the validity of the above expression for the Aron-

Berner extension of an integral polynomial is equivalent to E not containing an 

isomorphic copy of l1. for this we will use the equivalence given by Haydon in 

[9], and the characterization of the Aron- Berner extension in [1]. We will also 

be able to prove that the Aron-Berner extension of an integral polynomial is 

always integral, with the same integral norm even when the above expression is 

not valid. µ will denote a regular Borel measures on (Bx,ω’), and k ∈a positive 

integer. Define S, 1l  (µ)→X’ as S(f)(x) = )()()( γµγγ dxf
EB∫  and consider 

S’: X”→ 1l  (µ)’ = ∞l  (µ). It easily follows that ||s’|| = ||s|| ≤ 1 and, for x ε X, s’ 

(x) = x, where x is the class of the function γ→γ(x). 

Lemma 3.2.1: If P is an integral polynomial over X, represented by the 

measureµ, then its Aron-Berner extension P may be written 

∫=
'

)(')(
EB

k
dzSzP µ [14] 

Corollary 3.2.2:  The Aron- Berner extension of an integral polynomial is an 

integral polynomial and has the same integral norm. [7] 

Proof:  A polynomial Q on a Banach space x is integral if and only if there 

exists a  finite measure v on a compact space Ω and a bounded linear operator R: 

x → ∞l  (Ω) such that 

Q(x) =∫Ω R(x)
k
 dv 

(see[10]). Moreover, we have ||Q||I ≤ || R||
k
|v|. 

in our case, the previous lemma gives such a factorization and, since ||s’|| ≤ 

1,|| P ||I ≤ ||P||I. the other inequality is a consequence of our first proposition of 

1l , since p is an extension of as a linear functional. 

 

† Emmanuel Okereke, Ph.D., Michael Okpara University of Agriculture, Nigeria 
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