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ABSTRACT 

 

In this work, I discussed the solution of a chemical equilibrium 

problem aiming to obtain its fixed point. To do this, the preliminary and basic 

ideas introducing the fixed point theory was x-rayed and the Newton Raphson’s 

iterative method for solving the system of non-linear equations discussed, then 

the problem of the chemical equilibrium involving principal reactions in the 

production of synthesis gas by partial oxidation of methane with oxygen were 

stated. 

 Using a computer program the O reactant ratio that produce an 

adiabatic equilibrium temperature were obtained by developing a system of 

seven simultaneous nonlinear equations that has the form which we now solve 

using the Newton Raphson’s method described in section 2.2 and hence the 

desired fixed point of the chemical equilibrium problem. 

 

THE NETWON’S METHOD, A PRELLIMINARY TO THE NEWTON 

RAPHSON’S ITERATIVE METHOD 

  Let T be an operator mapping a set X into itself, a point x ∈ X is called 

a fixed point of T if    

                             x = T (x)                                    …                             (1.1) 

By (1.1), we achieve a natural construction of the method of successive 

approximations.  

                        x n+1 = T (xn), n ≥ 0  ∈ x        …                                    (1.2) 

and if the sequence (xn), n ≥ 0 converges to some point x = x* ∈ X for some 

initial guess x0 ε x, where T is a continuous operator in a Banach space X, we 

have 

 x* = ( )nx
n

TnxT
nn

x
n ∞→

=
∞→

=+∞→
lim)(lim

1
lim  

that is x* is a fixed point of operations T. Hence we now state without proof the 

following important results that make easy the understanding of the Newton 

Raphson’s method used in this work 

Theorem (1.1): If T is a continuous operator in a Banach X, {xn}, (n ≥ 0) 

generated by (1.2) converges to some point x* ∈X for some initial guess x0 ∈ X 

and we say that x* is a fixed point of the operator T [1]. 

 To investigate the uniqueness property, we introduce the concept of 

contraction mapping as follows. Let (x,|| ||) be a metric space and T a mapping of 

X into itself. The operator T is said to be a contraction if there exists a real 

number k,  0 ≤ k < I such that  
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                  ,)()( yxkyFxF −≤−  for all x, y ε x                 …    (1.3) 

Hence, every contraction mapping T is uniformly continuous. Indeed T is 

lipschitz continuous with a lipschitz constant k which may also be called the 

contraction constant for T. With the above; we now discuss the Banach fixed 

point extensively as related to the target of this research. 

Theorem 1.1A [9] (Banach fixed point theorem (1922). Suppose that 

we are given an operator T:M ⊆ X → M, i.e., M is mapped into itself by T; 

M is a closed nonempty set in a complete metric space (x,d); 

T is k – contractive, i.e. d(Tx, Ty) ≤ k . 

Then the following hold: 

Existence and uniqueness:- T has exactly one fixed point on M; 

Convergence of the iteration: the sequence  {xn} of successive approximations 

converges to the solution, x. for an arbitrary choice of initial point x0 in M; 

Error estimate: for all n = 0, 1, 2… we have the a prior error estimate d(xn, x) ≤ 

k
n
 (1-k)

-1
 d(x0, x), and the a posteriori error estimate  d(xn+1, x) ≤ k(1-k)

-1
 

d(xn,xn+1); 

Rate of convergence; for all n =0,1,2,…We have  d(xn+1,x) ≤ kd(xn, x) 

Definition 1.1 [9] An operator T:M ⊆  X → X on a metric space (X,d) is called 

k- contractive if f (1.3) holds for all x, y ε M with fixed k, 0 ≤ k < 1,  

T is called Lipschitz continuous and if. 

          d(Tx,Ty) < d(x,y) for all x, y ε M with x ≠ y,       …        (1.4) 

T is called contractive for T and we obviously have the implications:- 

 k- Contractive → contractive→ no n expansive → Lipschitz continuous. 

Every Banach space called the (x,|| ||) also is a complete metric space as 

                           (x,d) under d(x,y) = ||x-y||. 

  On a B-space, (1.3) therefore becomes  

                            ||Tx-Ty|| ≤ k|| x-y||.  

On the above the following follows 

{xn} is a Cauchy sequence. This follows from  

d(xn,xn+1) = d(Txn-1,Txn) ≤ kd(xn-1.xn)       

       ≤ k
2
d(xn-2,xn-1) ≤… ≤ k

n
d(x0,x1).         

(1.5) 

Repeated application of the triangle inequality and finally summing the formula 

for a geometric series yields 

                     d(xn,xn+m) ≤ d(xn,xn+1) + d(xn+1,xn+2)+…+ d(xn+m-1, xn+m) 

        ≤ (k
n
 +k

n+1
 +…+k

n+m-1
)d(x0,x1) 

        ≤ k
n
(1-k)

-1
d(x0,x1)…      

         (1.6) 

Since X is complete, the Cauchy sequence converges, i.e., xn→x as n → ∞ [3]. 

Equation (1.5) follows by letting m → ∞.  

                (II)    The error estimate (1.6) follows by letting m →∞ in  

           d(xn+1,xn+m+1) ≤ d(xn+1,xn+2) +…+ d(xn+m-1, xn+m+1) 

         ≤ (k +k
2
 +…+k

m
)d(xn,xn+1) 
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         ≤ k(1-k)
-1

d(xn,xn+m)…     

  (1.7) 

The point x is a solution of (1.1) for T is continuous by (1.4). Since T(M) ⊆ M 

and x0  ∈ M, we have xn  ∈ M also, for all n. since M is closed and xn →x as n 

→ ∞, we get x ∈ M. Equation (1.2) implies that Tx = x for n → ∞. 

Equation (1.6) follows d (xn+1, x) = d(Txn,Tx) ≤ kd(xn, x). 

Uniqueness of solution. Suppose x = Tx and y = Ty; then d(x,y) 

 = d(Tx, Ty) ≤ kd(x,y), which forces d(x,y) = 0, i.e. x =y. 

 

Continuous Dependence On A Parameter 

It is important to note that in many applications, T depends on an additional 

parameter P. then, (1.1) is replaced by the equation. 

xp = Tpxp, xp∈M,                 …    (1.8) 

where p ∈ P. 

Proposition 1.2 (Corollary to Theorem 1.1A.) let the following conditions be 

P is a metric space, called the parameter space. 

For each P, the operator Tp satisfies the hypotheses of Theorem (1.A) but with k 

in (1.3) independent of p. 

For a fixed p0 ∈P, and for all x ∈ M, limp→p0 Tp
X
=Tp0

X
. 

Then, for each p∈P, (1.8) has exactly one solution 

 xp∈M, and limp→po xp = xp0 [3]. 

Proof: later xp be the solution of (1.8) given by theorem 1.1 A, then 

d(xp, xp0) = d(Tpxp, Tp0xp0) 

       ≤ d(Tpxp,Tpxpo) + d(Tpxpo, Tpoxpo) 

        ≤ kd(xp,xpo) + d(Tpxp0, Tp0xp0), 

And therefore, 

d(xp, xp0) < (1-k)
-1

d(Tpxpo,Tpoxpo) → 0   as   p →po, by (iii). [9] 

 

1.5.  Accelerated Convergence and Newton’s method [5] 

We begin with the insight which underlines the acceleration of iterative 

methods. Let x be a solution of the real equation X = F (x), and suppose the 

sequence of iterations (x, where  

                                    xn+1 = f (xn)      …                                                         

(1.9) 

And xn €[a, b] for all n, converges to x as n → ∞.  

Now for the key: Suppose further that f is m – times differentiable on [a,b], with 

                               f′(x) = 
f(2)

(x) =… = f
(m-1)  

= 0                            

(1.10) 

    

 

 

 

 

 

 

(a) 

Figure 1.4 x1 x1 x0 
(b) 

X0 
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Since xn+1 = f(xn) and x = f(x), we have  

|xn+1-x|  ≤ 
ba <<ξ

sup  f
(m)

 (ξ)|| xn – x/
m
/m! - - -  

      (1.11) 

If the supremum in (1.11) is finite, we obtain the convergence of order m, as 

opposed to the linear convergence (m=1) of (1.9) 

Example 1.1[10]. The trick to Newton’s method consists of rewriting the 

equation f(x) = 0 in the equivalent form. X = F(x), where f(x) = x - 
)(

)(

xf

xf
 

Then the iterative method becomes xn+1 = xn - 
)(

)(

n

n

xf

xf
 

We assume that f
′
 (xn) ≠ 0 for all n. the, f

′
(x) = f(x) f 

n 
(x) / f

′
(x)

2
 

So that if x is a solution of f (x) = 0 with f
′
(x) ≠ 0, then f

′
(x) = 0. Thus we have a 

method with m = 2 in (1.1.9) i.e. we have quadratic convergence. 

 We apply this to the equation x = T(x) in (1.1.1) i.e. f(x) = T(x). 

Computing, we obtain the iterative values xn with linear convergences.  

 The geometric interpretation of Newton’s methods is seen in figure 1.4 

(a). To find a zero, x, of f, take the initial value, x0, and determine the 

corresponding functional value, f(x0). The next iterative value, x1 is the 

intersection of the tangent line at (x0,f(x0) and the x- axis. Keep repeating the 

process, it is typical of Newton’s method that it converges very rapidly if the 

initial value x0 is already in the vicinity of the zero, but figure 1.4(b) shows a 

better of this. 

 

 

 

 

 

 

 

 

 

However, we know that the above discussed fixed point method is just the 

traditional fixed point method that is restricticted to the solution of only linear 

systems and for the purpose of this research we advance onto the modified 

Newton’s method which is the Newton Raphson’s iterative method here below 

generated for use in section three 

 

2. NEWTON’S RAPHSON’S METHOD 

 

 Sections 2 and 3 are concerned with finding the solution, or solutions, of the 

system. 

D0 

t0 -c t0  t0 +c 

Q0 

t 

Figure 1.5 
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( )
( )

( ) ,0,...,,

)1.2(,0,...,,

,0,...,,

21

212

211

=

=

=

nn

n

n

xxxf

xxxf

xxxf
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Involving n real functions of the n real variables x1,x2,…,xn. Following the 

previous notation, x = {x1,x2,…,xn}
t
, we shall write fi (x) = fi (x1,x2,…,xn) here, 

and in the subsequent development, 1 ≤ i ≤n. Then let α = [α1,α2,…, αn]
t
 be a 

solution of (2.1), that is, let fi(α) = 0. 

 Let the n functions fi (x) be such that xi = Fi (x)          (2.2) 

Implies fi (x) = 0, 1 ≤ j ≤ n. Basically, the n equations (2.2) will constitute a 

suitable rearrangement of the original system (2.1). In particular,  

                                           let αi = fi (α) …           (2.3)  

Let the starting vector x0 = [x10, x20,…,xn0]
t
 be an approximation to α. Define 

successive new estimates of the solution vector, xk = [x1k,x2k…,xnk]
t
, k = 1, 2,…, 

by computing the individual elements from the recursion relations. 

                                       xik = Fi (x1,k-1, x2,k-1,…,xn,k-1).                 (2.4) 

suppose there is starting R describable as |xj - αj| ≤ h, 1 ≤ j ≤ n, and for x in R 

there is a positive number µ, less than one, such that  

)5.2(
)(

1

µ≤
∂

∂
Σ

= j

i
n

j x

xF

 

Then, if the starting vector x0 lies in R, we show that the iterative method 

expressed by (2.4) 

converges to a solution of the system (2.1), that is,                                                                                           

)6.2(lim α=
∞→

k
k

x

 

Using the mean-value theorem, the truth of (2.1) is established by first noting 

from (2.3) and (2.4), that  

             xik- αI = Fi (xk-1)-Fi (α). 

 

                     

( )[ ]
)7.2(,)(

11,

1,
1

j

kkii

jkj

n

j x

xF
x

∂

−+∂
−Σ= −−

−
=

αξα
α

 

In which 0 < ξi,k-1 < 1. that is,  

                 ,
1

hh
x

F
hx

j

i
n

j
ik <≤

∂

∂
Σ≤−
=

µα                         (2.8) 
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Showing that the points xk lie in R. also, by induction, from (2.5) and (2.7), 

                  |xik -α| ≤ µ max (|xj,k-1- αj|) ≤ µ
k
h.    (2.9) 

Therefore, (2.6) is true, and the procedure converges to a solution of 

(2.1). Note that if the Fi (x) are linear, we have the Newton’s method, and the 

sufficient conditions of (2.5) are the same as the second set of sufficient 

conditions controlling the Newton’s iteration. 

 For the nonlinear equations, there is also a counterpart to the Newton’s 

method, previously discussed for the linear case. We proceed as before, except 

that some replacements are made by 

                 Xik=Fi (xik,x2k,…,xi-1,k,xi,k-1,…xn,k-1).               (2.10) 

That is, the most recently computed elements of the solution vector are always 

used in evaluating the Fi. The proof of convergence according to (2.10) is much 

the same as for the jacobi-type iteration. We have 

               ,
)(

),( 1
1

j

iki

jkj

n

j
iik

x

F
xx

∂

Σ∂
−Σ=− −

=
αα    

Where   ∑Xik - α = [α1 + ξik (x1,k-1 - α),…,αn + ξik (xn,k -1- αn]
t
, 

It will appear inductively that the above is true, because the various points 

concerned remain in R. If ek-1 is the largest of the numbers |xj,k-1 - αj|, then 

           xik- α1| ≤ µek-1 <ek-1 < h.  

it follows that 

where  

ε2k = [α1+ ξ2k(x1k-α1), α2+ξ2k(x2,k-1-α2),… αn + ξ2k (xn,k-1- αn)]
t
. that is, |x2k-α2| ≤  

µek-1 <ek-1 < h. 

Therefore, |xik- αi| ≤ µ
k
h, and convergence according to (2.1) is again 

established.  

Observe that the first of the sufficiency conditions of the same (2.10) has been 

reaffirmed under slightly general circumstance. 

 

 2.2 Newton- Raphson’s Iteration for Nonlinear Equations.  

 

The equations to be solved are again those of (2.1), and we retain the 

nomenclature of the previous section. The Newton-Raphson process, to be 

described, is once more iterative in character. We first define. 

        

( ) ( )
)11.2(...

j

i
ij

x

xf
xf

∂

∂
=  

Next define the matrix φ (x) as 

                     φ (x) = (fi(x)), 1 ≤  I ≤n, 1 ≤ j ≤  n.         …         (2.12) 

 

Thus det (φ (x)) is the Jacobian of the system (2.1) for the vector x = [x1, 

x2,…,xn)
t
. now define the vector  

                 f (x) as f(x) = [fi (x), f2(x),…, fn(x)]
t
.                                 (2.13) 

xj

k
F

jkj
x

n

j
jx

k
F

k
x

∂

Σ∂





 −−=

Σ+
∂

Σ∂
=−

)
2

(
2

1,2

)
2

(
2)

1
-

ik
(x

22
ααα
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With these definitions in mind, and with the starting vector  

                     x0 = [x10,x20,…,xn0]
t
, let xk+1 = xk+δk, …                           (2.14) 

The fundamental theorem concerning convergence is much less restrictive than 

those of the previous sections. We have the result that if the components of φ (x) 

are continuous in a neighborhood of a point α such that 

            f (α) = 0, if det (φ(α)) ≠ 0, and if x0 is “near” α, then .lim α=
∞→ kk

x

 …       (2.15) 

 An outline for a method of proof follows. By (2.13) and (2.14), since  

             fi (α) = 0, δk = φ-1
 (xk) [f(α)].  …                                                       

(2.15) 

By the mean- value theorem, 

              

( )

.10

),))((()(
1

<<

−−+Σ=− ∫=

ik

jkkik

n

j
iki

where

xxijfxf

ξ

ααξαα
 

For the ith row of a matrix ψ use [f11 (α + ξik (xk - α)),…, fin(α + ξik(xk- α))]. 

Then  xk+1-α = xk - α + δk = φ
-1

 (xk) φ(xk)-ψ] (xk- α). 

Since the entries in the matrix φ (xk)- ψ are differences of the type fij (xk) - fij 

(α+ξik (xk- α)), they can be kept uniformly small if the starting vector X0 lies in 

an initially chosen region R describable as |xi-αi| ≤ h, 1 ≤ i ≤ n. concurrent with 

this is the fact that since det (φ(xk)) can be bounded from zero. The net result is 

that, for 0 < µ < 1, |xik-αi| ≤ h µ
k
,1, ≤ i ≤ n. thus the sequence [xk] converges to α 

[6]. 

Example (2.1) [7]. To illustrate the procedure, we use the example below 

namely. 

 

,,
2

1
22

,
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1
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0
24

),sin(
2

1
),(

2

212

1

2

211

1

1212

1

1

212

212

12

21211

)16.2(

ππ

π

ππ

π

e

x

f
ee

x

f

xxx

x

fxxx

x

f

ex
ex

eexxf

xx
xxxxf

x

x

thatseenreadilyisit

=
∂

∂








−+−=

∂

∂

+−=
∂

∂
−=

∂

∂

=−+−







−=

=−−=

  

 

The increments ∆x1 and ∆x2 in x1 and x2 are determined by  

.

,

22

2

2

1

1
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1

1

1

fx
x

f
x

x

f

fx
x

f
x

x

f

−=∆
∂

∂
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∂
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∂

∂
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∂
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Or, writing the determinant D of the coefficient matrix (the Jacobian), 
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 for case in verification, detailed results are tabulated in Table 3.1 and moreover, 

calculations were carried out using slide rule and the entries 0.00000 showed 

tiny negative values. 

 

APPLICATION  OF NEWTON- RAPHSON’S METHOD IN SOLVING 

THE CHEMICAL EQUILIBRUIM PROBLEM 

The principal reactions in the production of synthesis gas by partial oxidation of 

methane with oxygen are: 

CH4 + ½ O2      →  CO + 2H2 → - - -

 (3.1) 

CH4 + H2O   →    CO + 3H2 → - - -

 (3.2) 

H2 + CO2  →    C0 +H2O → - - -           

(3.3) 

Write a program that finds the 0 reactant ratio that will produce an adiabatic 

equilibrium temperature of 2200
0
 F at an operating pressure of 20 atmospheres, 

when the reactant gases are preheated to an entering temperature of 1000
0
F. 

 Assuming that the gases behave ideally, so that the component 

activities are identical with component partial pressures, the equilibrium 

constants at 2200
0
F for the three equations are respectively: 

                                                          

( )

( )

)6.3(6058.2

5.3...

4.3...

22

2

5

11

0

3

2

2
2

1

107837.1

24

2
3

103.1

02

2/1

→==

→=

→↓==

=

HCO

HCO

H

PP

PP
K

K

PcoP
K

x
OH

P
CH

P

HPcoP

P
CH

P

x

 

Here PCO, Pco2, PH2O, PCH4 and PO2 are the partial pressured of CO (carbon 

monoxide), CO2 (carbon dioxide), H2O (water vapor), H2 (hydrogen), CH4 

(methane), and O2 (oxygen), respectively. Enthalpies of the various components 

at 1000
0
F and 2200

0
F are listed in Table (3.1) 
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Table (3.1) Component Enthalpies in BTU/b mole 

Component 1000
0
F 2200

0
F 

CH4 -13492 8427 

H2O -90546 -78213 

CO2 -154958 -139009 

CO -38528 -28837 

H2 10100 18927 

O2 10690 20831 

 

A fourth reaction may also occur at high temperatures: 

C+ CO2 2CO (3.1) at 2200
0
F, any carbon formed would be deposited as a solid; 

the equilibrium constant is given by  

               

( )8.3107837.1
5

2

2

4 x
Pcoac

coP
K ==

 

where ac is the activity of carbon in the solid state. Do not include reaction (3.7) 

in the equilibrium analysis. After establishing the equilibrium composition, 

considering only the homogeneous gaseous reactions given by (3.1), (3.2), and 

(3.3), determine the thermodynamic likelihood that solid carbon would appear as 

a result of reaction (3.7). Assume that the activity of solid carbon is unaffected 

by pressure and equals unity. 

 Use the Newton- Raphson method to solve the system of simultaneous 

nonlinear equations developed as the result of the equilibrium analysis. 

 

3.2 METHOD OF SOLUTION 

 Because of the magnitude of K, the equilibrium constant for reactions,  the first 

reaction can be assumed to go to completion at  2200
0
F, that is virtually no 

unrelated oxygen will remain in the product gases at equilibrium. 

Let the following nomenclature be used. 

x1 mole fraction of CO in the equilibrium mixture 

x2 mole fraction of CO2 in the equilibrium mixture 

x3 mole fraction of H2O in the equilibrium mixture 

x4 mole fraction of H2 in the equilibrium mixture 

x5 mole fraction of CH4 in the equilibrium mixture 

x6 number of moles of O2 per mole of CH2 in the feed gas 

x7 number of moles of product gases in the equilibrium mixture per  

mole of CH4 in the feed gases. 

Then a system of seven simultaneous equations may be generated from three 

atom balances an energy balance, a mole fraction constraint and two equilibrium 

relations. 

 Atom conservation balances: the number of atoms of each element 

entering equals the number of atoms of each clement in the equilibrium mixture. 

  Oxygen: x6 = (1/2x1 + x2 + 1/2x3  → … (3.9) 

  Hydrogen: 4 = (2x3 + 2x4 + 4x2  →
 … (3.10) 

  Carbon: 1 = (x1 + x2 + x5  → … (3.11) 
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Since the reaction is to be conducted adiabatically, that is, no energy is added to 

or removed from the reacting gases, the enthalpy (H) of the reactants must equal 

the enthalpy of the products. 

[HCH4 + x6H02]1000’F = x7[x1HC02 + x3H20 + x4H2 + x5HCH2]2200’F   …        (3.12) 

mole fraction constraint.      

  x1 + x2 + x4 + x5 + = 1   …    (3.13) 

Equilibrium relations. 

  

)15.3(

)14.3(

...6058.2

...107837.1

42

31
3

5

53

4
3

1

2

2

→==

→==

XX

XX
K

x
xx

XXp
K

 

 

The relationships (3.14) and (3.15) follow directly from (3.5) and (3.6), 

respectively, where P is the total pressure and Pco = Px1, etc. in addition, there 

are five side conditions. 

   x1 ≥ 0, I = 1, 2, 5   …                           (3.16) 

These C ions more that all mole fractions in the equilibrium   mixture are 

nonnegative, that is, any solution of equation (3.9) to 3.15) that contains 

negative mole fractions is physically meaningless from physical-chemical 

principle there is one and only one solution of the equation that satisfies 

conditions (3.16). Any irrelevant solutions may be detected easily. 

 

The seven equations may be rewritten in the form. 

f1 (x) = 0, I = 1, 2,…, 7               (5.5.17) 

where x = [x1x2 x3 x4 x5 x6 x7]
t
, as follows: 
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a
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→=−++=

→=−++=

→=−++=

 

 The system of simultaneous nonlinear equations has the form (2.1), and 

will be solved using the Newton- Raphson method, described in section 2.2.  

The partial derivatives of above may be found by partial differentiation of the 

seven functions, f1 (x), with respect to each of the seven variables. For example, 
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The Newton- Raphson method may be summarized as follows: 

Choose a starting  vector xK = x0 = [x10, x20, …, x70],  where x0 is hopefully near 

a solution 

solve the system of linear equations (2.14), 

φ (xk)δk = - f(xk), 

where 

 φij (xk) =    
)20.3()(

,7,...,2,1
,7,...,2,1

1
=
=∂

∂ i
jk

j

x
x

f  

   )21.2(,)(
7

),.....,(
2

),(
1

)(
t

k
xf

k
xf

k
xlf

k
xf =  

  for the increment vector 

      )22.3(
7

,......,21

t

k
k

kk








=

δ
δδδ  

update the approximation to the root for the next iteration. xk+1 = xk + δk. 

check for possible convergence to a root α. One such test might be  

|δ ik| < ε2,        i = 1,2,…,7.  … (3.23) 

 if (3.23) is true for all i, then xk +1 is taken to be the root. Is test (3.23) is failed 

for any 1, then the process is repeated starting with step 2. The iterative process 

is continued until test (3.23) is passed for some k, or when k exceeds some 

specified upper limit. In the programs that follow, the elements of the augments 

matrix   A=[φ(xk): - f(xk)] … (3.24) Are evaluated by a subroutine named 

CALCN. The system of linear equations (3.24) is solved by calling on the 

function SIMUL, described in detail in example (2.1) 

The main program is a general one, in that it is not specifically written to solve 

only the seven equations of interest. By properly defining the subroutine 

CALCN, the main program could be used to solve any system of n simultaneous 

nonlinear equations. The main program reads data values for itmax, iprint, n, Σ1, 

Σ2, and x1, x2,…, xn  here, itmax is the maximum number of Newton- Raphson’s 

iterations, print is a variable that controls printing of intermediate output, n is the 

number of nonlinear equations, Σ1, is the minimum pivot magnitude allowed in 

the Gauss-Jordan reduction algorithm, Σ2, is a small positive number used in test 

(3.23), and x1,x20,….,xno, that is, the elements of x0.  
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FLOW DIAGRAM 

Main Program 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beg

in 

Itmax, iprint 

n, Σ1, Σ2 
x10,…,xno 

K=1,2,…, itmax,  Evaluate elements 

aij of augmented 

matrix 

A (see (5.5.24)). 

(Subroutine 

Solve system of n 

linear equations 

(5.44) for the 

increments 

δ ik, δ 2k,…,δ nk 

and determinant, d. 

(function SIMUL) 

“Matrix ill- 

conditioned
End  

i = 

 T d = 

T 

F 

 Itcon       

|δ ik| < Σ2 Itcon      0 

xi,k+1            

5 

itcon= 

T 

“No 

Convergenc

e” 

T 

9 
End 

“Convergen

ce” k, d, n, 

xi,k+1,....,xn,k +1 

F 

End Retur

Calculate elements 

aij  i = 1, 2,…., n  

j = 1, 2,…..n+1 of 

matrix A 

(see(5.5.24)). 

End 

Subroutine CALC (Arguments: xk, A, N) 

End 
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Fortran Implementation           

  List of Principle various program Symbol 

(Main) 

A              Augmented matrix of coefficients, A (see (3.22). 

DETER    d, determinant of the matrix φ (the jacobian). 

EPS1        Σ1, minimum pivot magnitude permitted in subroutine SIMUL. 

EPS2        Σ2, small positive number, used in convergence test (3.23).  

                  subscript, i. 

IPRINT      Print control variable, if iprint = 1, intermediate solutions are  

                  printed after each iteration. 

ITCON       used in convergence test (3.23). ITCON 1 if (3.23) is passed  

                  for all i, i = 1, 2,…..,n: otherwise ITCON = 0. 

ITER          Iteration counter, k. 

ITMAX       maximum number of iterations permitted, itmax. 

N                number of nonlinear equations, n. 

XINC          vector of increments,   ik, i = 1, 2, ….,n. 

XOLD         vector of approximations to the solution, xik. 

SIMUL         function developed in Example (2.1) solves the system of n  

                   linear equations (2.15) for the increments,. ik i = 1, 2,…,n. 

 

(subroutine CALCN) 

DXOLD       same as XOLD. Used to avoid an excessive number of  

                    reference to subroutine arguments in CALCN. 

I, J,              i and j, row and column subscript, respectively. 

NRC            N, dimension of the matrix A in the calling program. A 

is  

                    assumed to have the same number of rows and 

columns. 

P                  pressure, P, atm. 

 

Program Listing(Chemical Equilibrium by Newton- Raphson Method) 

Main Program 

c                     APPLIED NUMERICAL METHODS, EXAMPLES 5.5 

C                    CHEMICAL EQUILIBRIUM- NEWTON-RAPSION METHOD 

C         

C                   THIS PROGRAM SOLVES N SIMULTANEOUS NON-LINEAR 

EQUATIONS 

C                   IN N UNKNOWNS BY THE NEWTON-RAPSON ITERATIVE 

PROCEDURE 

C                   INITIAL GUESSES FOR VALUES OF THE UNKNOWNS ARE 

READ INTO 

C                   XOLD (1)…….XOLD (N). THE PROGRAM FIRST CALLS ON 

THE SUBROUTINE 

C                   CALCN TO COMPUTE THE ELEMENTS OF A. THE 

AUGMENTED MATRIX OF 
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C                   PARTIAL DERIVATIVES, THEN ON FINCTION SIMUL (SEE 

PROBLEM 5.2) 

C                  TO SOLVE THE GENERATED SET OF LINEAR EQUATIONS 

FOR THE CHANGES 

C                   IN THE SOLUTION VALUES XINC(1)……XINC(N). DETER 

IS THE 

C                  JOCABIAN COMPUTED BY SIMUL. THE SOLUTIONS ARE 

UPDATED AND THE 

C                  PROCESS CONTINUED UNTIL ITER, THE NUMBER OF 

ITERATIONS, 

C                  EXCEEDS ITMAX OR UNTIL THE CHANGE IN EACH OF 

THE N VARIABLES 

C                  IS SMALLER IN MAGNITUDE THAN EPS2 (ITCON =1 

UNDER THESE 

C                  CONDITIONS). EPS1 IS THE MINIMUM PIVOT MAGNITUDE 

PERMITTED 

C                  IN SIMUL. WHEN IPRINT  =1, INTERMEDIATE SOLUTION 

VALUES ARE 

C                  PRINTED AFTER EACH ITERATION. 

C 

                DIMENSION XOLD (21), XINC (21), A (21,21) 

C 

C             ….READ AND PRINT DATA… 

       1      READ (5,100) ITMAX, IPRINT, EPS1, EPS2, (XOLD(1), 1=1, N) 

                WRITE(6,200) ITMAX, IPRINT, N, EPS1, EPS2, N, (XOLD)(1), 

1=1,N) 

C 

C            … CALL ON CALCN TO SET UP THE A MATRIX… 

              CALL CALCN (XOLD, A, 21) 

C 

C            … CALL SIMUL TO COMPUTE JACOBIAN AND CORRECTIONS 

IN XINC… 

              DETER = SIMUL (N, A, XINC, EPS1, 1, 21) 

              IF (   DETER. NE. D. ) GO TO 3 

                    WRITE (6   GO TO  

C 
C           …CHECK FOR CONVERGENCE AND UPDATE XOLD VALUES… 
      3     ITCON = 1 
             DO 5 1 – 1, N 
             IF (ABS(XINC(1)) . GT. EPS 2 )  ITCON = 0 

5      XOLD (1) = XOLD(1) + XINC(1) 
         I F   (   IPRINT. EQ. 1   )     WRITE  (6, 202)   ITER, DETER, N, (XOLD (1), 1 = 
1,N) 
         I F   (   ITCON. EQ. 0  )    ITER, N, (XOLD(1), 1 = 1, N) 
                WRITE (6,203) ITER, N, (XOLD(1), 1 =1,N) 
                GO TO 1 

9 CONTINUE 
C          
              WRITE 96, 204) 
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 PROGRAM Listing (continued) 

Subroutine CALCN 

         SUBROUTINE CALCN D XOLD, A, NRC  ) 

C               THIS SUBROUTINE SETS UP THE AUGMENTED MATRIX OF 

PARTIAL 

C               DERIVATIVES REQUIRED FOR THE SOLUTION OF THE 

NON-LINEAR 

C               EQUATIONS WHICH DESCRIBE THE EQUILIBRIUM 

CONCENTRATIONS 

C               OF CHEMICAL CONSTITUENTS RESULTS FROM PARTIAL 

OXIDATION 

C               OF METHANE WITH OXYGEN     TO PRODUCE SYNTHESIS  

GAS.      THE PRESSURE 

C               IS 20 ATMOSPHERES.      SEE      TEXT     FOR MENINGS OF 

XOLD(1)…XOLD(N) 

C               AND A LISTING OF THE EQUATIONS.        DXOLD HAS BEEN 

USED AS THE 

C               DUMMY    ARGUMENT  FOR     XOLD  TO AVOID   AN 

EXCESSIVE NUMBER OF 

C               REFENCENCES TO ELEMENTS IN THE ARGUMENT LIST. 

C 

        DIMENSION XOLD(20), DXOLD(NRC), A(NRC , NRC) 

C 

        DATA P /   20.  / 

C 

C         …SHIFT ELEMENTS OF DXOLD TO XOLD AND CLEAR A  

ARRAY… 

        DO       1    I  = 1 ,     7 

        XOLD(1)       =       DXOLD(1) 

        DO     1       J = 1,     8 

 1   A(1 , J)  = 0. 

C 

C          …COMPUTE NON-ZERO ELEMENTS OF A… 

            A (1,1) = 0.5 

            A (1,2) = 1.0 

            A (1,3) = 0.9 

            A (1,6) =  1.0 / XOLD (7) 

            A (1,7) = XOLD (6) / XOLD (7)**2 

            A (1,8) = - XOLD(1) / 2. – XOLD (2) -  XOLD (3) /2,   * XOLD (6) / 

XOLD(7) 

            A (2,3) = 1.0 

            A (2,4) = 1.0 

            A (2,5) = 2.0 

            A (2,7) = 2.0 / XOLD (7) **2 

            A (2,8) = XOLD(1) – XOLD(2) – XOLD(5) + 1.0 / XOLD(7 
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Chemical Equilibrium (Newton- Raphson Method) 

Program listing (continued) 

Data 

      ITMAX    =    50                         IPRINT      =  1                   N             =             

7 

      EPS1      =  1.0E – 10                EPS2        =  1. 0E – 05 

      XOLD (1)… XOLD(5)        =                  0.500                0.000             0.000           

0.500             0.000 

      XOLD(6)….XOLD(7)        =                  0.500                2.000 

       ITMAX     =          50                      IPRINT     =       0                 N                 

=   7 

       EPS1       =      1.0E-10                  EPS2       =       1.0E – 05 

       XOLD(1)….XOLD(5)        =                  0.200                 0.200             0.200           

0.200            0.200 

       XOLD(6)….XOLD(7)        =                   0.500                2.000 

       ITMAX     =          50                        IPRINT    =      0                   N                 

=    7 

            A (3,1) = 1.0 
            A (3,2) = 1.0 
            A (3,5) = 1.0 
            A (3,7) = 1.0 / XOLD(7) **2 
            A (3,8) = - XOLD(1) – XOLD(2) – XOLD(5) + 1.0 / XOLD(7) 
            A (4,1) = - 28837. 
            A (4,2) = - 139009. 
            A (4,3) = - 78213. 
            A (4,4) = 18927 
            A (4,5) = 8427 
            A (4,6) = - 10690. / XOLD (7) 
            A (4,7) = (- 13492. + 10690. * XOLD (6) ) / XOLD (7)**2 
            A (4,8) = 28837. * XOLD(4) – 8427. * XOLD(5) – 13492. / XOLD 97) + 10690.   
     1                 -18927. * XOLD(4)  - 8427. * XOLD(5) – 13492. / XOLD 97)  + 10690. 
        2                 * XOLD(6) / XOLD(7) 
            A (5,1) = 1.0 
            A (5,2) = 1.0 
            A (5,3) = 1.0 
            A (5,4) = 1.0 
            A (5,5) = 1.0 
            A (5,8) = 1.0 – XOLD(1) – XOLD(2)  -  XOLD(3)  - XOLD(4)  -  XOLD(5) 
            A (6,1) = P*P* XOLD(4)**3 
            A (6,3) = - 1.7837E5 * XOLD (5) 
            A (6,4) = 3.0 *P*P* XOLD(1) * XOLD(4)**2 
            A (6,5) = - 1.7837E5* XOLD (3) 
            A (6,8) = 1.7837E5*XOLD(5)*XOLD(3) – P*P*XOLD(1)*XOLD(4)**3 
            A (7,1) = XOLD (3) 
            A (7,2) = - 2.6058*XOLD(4) 
            A (7,3) = XOLD(1) 
            A (7,4) = - 2.6058* XOLD(2) 
            A (7,8) = 2.6058* XOLD(4) *XOLD(2) -  XOLD(1)*XOLD(3) 
            RETURN 
C 
            END 
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       EPS1       =      1.0E  - 10                EPS2       =       1.0E -05 

       XOLD(1)….XOLD(5)         =       0.220                          0.075               

0.001           0.580            0.125 

       XOLD(6)….XOLD(7)        =       0.436                          2.350     

 

Computer Output 

Results for the 1
st
 Data Set 

 

       ITMAX                =                50 

       IPRINT               =                   1 

       N                        =                   7 

       EPS1                 =                   1.0E -10 

       EPS2                 =                   1. 0E -05 

                                       XOLD(1)....XOLD (      7) 

                  5.000000E -01                      0.0                                0.0                                                  

5.000000E-01 

                  0.0                                         5.000000E -01              2.000000E   00                                          

      ITER                   =                1 

      DETER               =               -0.97077E         07 

                                     XOLD(1)...XOLD(    7) 

                 2.210175E -01                       2.592762E -02               6.756210E -02                              

4.263276E -01 

                 2.591652E -01                       3.3432350E -01             1.975559E   00 

      ITER                  =                 2 

      DETER              =                -0.10221E       10 

                                             XOLD(1)…XOLD(      7) 

                 3.101482E -01                        7.142063E -03               5.538273E -02                              

5.791981E-01 

                 4.812878E -02                        4.681466E -01               2.524948E  00 

     ITER                  =                   3 

     DETER              =                  -0.41151E        09               

                                     XOLD(1)…XOLD(    7) 

                3.202849E -01                        9.554777E -03                 4.671279E -02                              

6.129664E -01 

                1.048106E-02                         5.533223E -01                 2.880228E   00 

    ITER                  =                    4 

    DETER              =                   -0.22807E        09 

                                    XOLD(1)…XOLD(       7) 

               3.228380E -01                         9.22480E -03                   4.603060E -02                               

6.180951E-01 

               3.811378E -03                         5.758237E -01                 2.974139E   00 

    ITER                   =                   5 

    DETER               =                  -0.20218E       09                        

                                    XOLD(1)…XOLD(      7) 

               3.228708E -01                        9.223551E -03                   4.601710E -02                             

6.181716E -01 
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               3.716873E -03                        5.767141E -01                   2.977859E  00     

    ITER                  =                     6 

    DETER              =                    -0.20134E       09  

                                   XOLD(1)…XOLD(      7) 

               3.228708E -01                        9.223547E -03                   4.601710E -02                            

6.181716E -01 

               3.716847E -03                         5.767153E -01                  2.977863E  00                             

 

Computer Output 
SUCCESSFUL CONVERGENCE 

        ITER                 =                 6 

                                                                          XOLD(1)…XOLD(    7) 

                     3.228708E -01                           9.223547E -03                 

4.601710E -02                         6.181716E -01 

                     3.716847E -03                           5.767153E-01                  2.97863E     

00                        

Results for the 3
rd

  Data Set 

       ITMAX                =                 50 

       IPRINT               =                   1 

       N                        =                   7 

       EPS1                  =                   1.0E -10 

       EPS2                  =                   1. 0E -05 

                                              XOLD(1)...XOLD (      7) 

                  2.200000E -01                              7.499999e -02                  

9.999999e -04                         5.800000E-01 

                  1.250000e -01                              4.360000e -01                  2.349999e 

00                                                                    

      ITER                   =                1 

      DETER               =               -0.61808E  08 

                                            XOLD(1)...XOLD(    7) 

                 6.9514955E -01                           -8.022028E -02                 1.272939E 

-02                        1.217132E  00 

               -8.447912E  -01                             1.314754E  00                  5.969404E  

00  

                             ITER                  =                 2 

      DETER              =                 0.12576E  09                                   

                                            XOLD(1)…XOLD(      7) 

              4.958702E -01                                -1.698154E -02                 5.952045E 

-03                       9.518250E -01 

             -3.65007E -01                                   2.379797E  00                  

1.043425E  01                        

     ITER                     =                3 

     DETER              =                   0.77199E  07 

                                                    XOLD(1)…XOLD(    7) 
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Tables (3.2) Equilibrium Gas mixture 

x1 Mole fraction CO 0.322871 

x2 Mole fraction CO2 0.009224 

x3 Mole fraction H2O 0.046017 

x4 Mole fraction H2 0.618172 

x5 Mole fraction CH4 0.003717 

x6 Mole fraction O2 / CH4 0.576715 

x7 Total moles of product   2.977863 

 

In the feed gases, and total number of moles of product per mole of HC4 in the 

feed are tabulated in Table (3.2). Thus the required feed ratio is 0.5767 moles of 

oxygen per moles of methane in the feed gases. 

To establish if carbon is likely to be formed according to reaction (5.5.7) at 

2200
0
F for a gas of the computed composition, it is necessary to calculate the 

magnitude of 

)25.3(...
2

2

1

2

2

xa

Px

Pa

coP

ccoc
K ==
v  

If K
v

 is larger than k4 from (3.25), then there will be a tendency for reaction 

(3.24) to shift toward the left; carbon will be formed. Assuming that ac = 1, 

             4.559822E -01                                 -9.799302E -04               -7.583648E -04                  
9.107630E -01 
            -3.650070E -01                                  2.509821E  00                 1.107038E  01 
    ITER                  =                    4 
    DETER              =                    0.53378   07 
                                          XOLD(1)…XOLD(       7) 
            4.569673E -01                                 -4.071472E -04                -2.142648E -03                       
9.152630E -01 
           -3.696806E -01                                  2.608933E 00                   1.149338E  01                   
  
    ITER                   =                   5 
    DETER               =                  0.49739E  07                        
                                         XOLD(1)… XOLD(      7) 
           4.569306E -01                                 -4.071994E -04                 -2.125205E -03                       
9.151721E -01 
          -3.695704E -01                                  2.610552E  00                   1.150046E  01          
               
    ITER                  =                     6 
    DETER              =                    0.49611E 07  
                                        XOLD(1)…XOLD(      7) 
          4.569306E -01                                 -4.071984E -04                   -2.125199E -03                         
9.151720E-01 
         -3.695703E -01                                 2.610549E    00                    1.150045E  01                
SUCCESSFUL CONVERHENCE 
    ITER                   =                     6 
                                        XOLD(1)…XOLD(     7) 
         4.569306E -01                                -4.071984E -04                    -2.125199E -03                        
9.151720E -01 
        -3.695703R -01                                 2.610549E  00                     1.150045E   01                             
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Therefore there will be no tendency for carbon to form. 

 

† Okereke, C. Emmanuel, Ph.D., Department of Mathematics, Michael Okpara 

University of Agriculture, Nigeria 
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