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Abstract 
 

In this paper, I discuss the contributions of del Ferro, Tartaglia, and 

Cardano in the development of algebra, specifically determining the formula to 

solve cubic equations in one variable. To contextualize their contributions, brief 

biographical sketches are included. A brief discussion of the influence of Ars 

Magna, Cardano’s masterpiece, in the development of algebra is also included.  

 

Introduction 

 
Our mathematical story takes place in the Renaissance era, specifically 

in sixteenth-century Italy. The Renaissance was a period of cultural, scientific, 

technology, and intellectual accomplishments. Vesalius’s On the Structure of the 

Human Body revolutionized the field of human anatomy while Copernicus’ On 

the Revolutions of the Heavenly Spheres transformed drastically astronomy; 

both texts were published in 1543.  Soon after the publication of these two 

influential scientific treatises, a breakthrough in mathematics was unveiled in a 

book on algebra whose author, Girolamo Cardano (1501-1576), exemplifies the 

common notion of Renaissance man. As a universal scholar, Cardano was a 

physician, mathematician, natural philosopher, astrologer, and interpreter of 

dreams.  

Cardano’s book, Ars Magna (The Great Art), was published in 1545. 

As soon as Ars Magna appeared in print, the algebraist Niccolo Fontana (1499-

1557), better known as Tartaglia – the stammerer–  was outraged and furiously 

accused the author of deceit, treachery, and violation of an oath sworn on the 

Sacred Gospels. The attacks and counterattacks set the stage for a fierce battle 

between the two mathematicians. What does Ars Magna contain that triggered 

one of the greatest feuds in the history of mathematics? (Helman, 2006).  To 

understand the vehement and displeasing dispute, one must recount the state of 

mathematical knowledge at the start of the sixteenth century and the background 

of the main characters. We begin with the background of the problem.  

 

Algebra of the Beginning of the Sixteenth Century 
 

In 1494, the Italian mathematician Luca Pacioli (ca. 1445-1509) 

published in Venice the remarkable compendium Summa de Arithmetica, 

Geometria, Proportioni, e Proportionalita. In it, the author discussed the basic 

principles of algebra with special emphasis on solving linear and quadratic 

equations. The Summa also contains a discussion of solutions of higher-degree 

equations. In particular, Pacioli noticed that “it has not been possible until now 
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to form general rules” (p. 47) to solve cubic and quartic equations. In addition, 

Pacioli mentions the impossibility of solving quadratic equations next to the 

unsolved classical problem of squaring the circle. Some members of the Italian 

mathematical community took up the challenge to find a general procedure to 

determine the solution of a cubic equation, that is, an equation of the form 
3

ax + 
2

bx  + cx + d = 0.  

During this time, the mathematicians had not accepted yet the use of 0 as a 

number and neither the use of negative numbers. Hence, setting an equation 

equal to zero was unthinkable and only the positive solutions of equations were 

considered. While today we have only one form of the general cubic equation 

(
3

ax + 
2

bx  + cx + d = 0 or 
3

x + n
2

x + px = q), 16
th

 century mathematicians 

investigated 13 different cases of cubic equations separately: 7 types of cubic 

equations with all the terms (
3

x + n
2

x + px = q, 
3

x + n
2

x + q = px, 
3

x + px + q 

= n
2

x , 
3

x + n
2

x = px +q,  q
3

x + px = n
2

x + q, 
3

x + q = n
2

x + px, 
3

x  = n
2

x + 

px + q), 3 cases of the cubic equation lacking the linear term (
3

x + n
2

x  = q, 
3

x + q =  n
2

x , 
3

x  =  n
2

x  + q), and 3 special cubic equations without the 

quadratic term (
3

x +  px = q, 
3

x + q = px, 
3

x = px + q). Of course, the three 

cases without the independent term (
3

x + n
2

x = px, 
3

x + px = n
2

x , 
3

x  = n
2

x + 

px) could be reduced to a quadratic equation.  

In 1509, Pacioli published his translation of Euclid’s Elements, which written in 

Italian, became a source of mathematical knowledge for his countrymen not 

versed in Latin. Italian scholars, continuing Euclid’s work as discussed in his 

tenth book, extensively studied sum and differences of square roots such as a + 

b , a  + b ,  a  –  b .  The sums were called binomials (binomiums 

in Latin) and the differences remainders (apotemes in Latin). They determined 

the solution to the quadratic equation 
2

x  + px  = q  using the formula 

2

2

p
q

� �
+� �

� �
  – 

2

p
.  This suggests that a quadratic equation has a solution of 

the form a  – b or  a  + b (for 
2

x  = px + q). Also, scholars of that time 

may have noticed that the difference of squares roots represented as x = 

a b+  –  a b− when squared results in the quadratic equation 
2x = 2a 

– 2
2a b− , which lacks the first power of x.  

 

Del Ferro 
 

Our story begins with Scipione del Ferro (1465-1526), a mathematician 

who lectured in arithmetic and geometry at the University of Bologna. Around 

1515, the talented del Ferro made the first critical breakthrough by discovering a 

formula for solving a case of the so-called “depressed cubic,” a specific cubic 
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equation that lacks its quadratic term. In other words, a cubic equation of the 

form 
3ax + cx + d = 0 or of the forms 

3x  + px = q, 
3x  + q = px, or 

3x  = px + q, 

where p and q are positive numbers. There is no general agreement among 

scholars whether del Ferro solved all the cases of the depressed cubic or only the 

case 
3x  + px = q. In any event, this was a significant advance in the search for a 

formula to solve the general cubic equation. Del Ferro’s algorithm to solve the 

equation 
3x  + px = q translates into modern notation as follows 

x = 

2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 – 

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �
           

However, del Ferro did not provide any hint of how he derived the formula. One 

approach that del Ferro may have used, according to Calinger (1999), is to 

consider the sum or difference of cubic roots in the same way that scholars at 

that time may have considered the sum and differences of square roots to 

produce quadratic equations, as mentioned above. The process may have been as 

follows 

Cubing the difference given by x = 
3 a b+  –  

3 a b− results in  

3x  = ( )a b+  – 3

2

3( )a b+ ( )
1

3a b− + 3

1

3( )a b+ ( )
2

3a b−  – 

( )a b−  

After simplifying and factoring, this equation reduces to  

3
x  = 2 b  – 3

1

3( )a b+ ( )
1

3a b− ( ) ( )
1 1

3 3a b a b

 


+ − −� �
� 	

 

And then to  

3
x  = 2 b  – 3

1

3( )a b+ ( )
1

3a b− x 

Rearranging terms becomes  

3
x  + 3

1

3( )a b+ ( )
1

3a b− x  = 2 b  

As we notice, this last equation is of the form 
3

x  + px = q with  

p = 3

1

3( )a b+ ( )
1

3a b− = 3 ( )
1

2 3a b− and q = 2 b  

Solving for a and b in terms of p and q one gets  

b= 

2

2

q� �
� �
� �

and a = 

2 3

2 3

q p� � � �
+� � � �

� � � �
 

Substituting these expressions into the first equation yields the cubic formula  
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x = 

2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 – 

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �            

  

Working in an academic environment where “publish or perish” seems to be a 

continuous pressure to sustain or further one’s career, current scholars may be 

surprised to learn that del Ferro, as other scholars of his time, did not publish his 

discovery. During the Renaissance, academic appointments were mostly 

temporary, subject to renewal, and held by scholars who had to prove their talent 

and reputation by winning public contests against other scholars. Being the only 

one knowing how to solve depressed cubic equations, del Ferro would prevail in 

a public competition by challenging the opponent to solve problems involving 

these types of equations. Even if del Ferro were unable to solve some of his 

opponent’s problems, he could feel confident that his adversary would be 

stumped by his problems.  

Del Ferro recorded his solution to the depressed cubic equation and some of his 

other contributions to mathematics in a notebook. When he died in 1526, del 

Ferro passed this notebook on to his son-in-law, Aniballe della Nave, and to 

Antonio Fior, one of his (rather poor) students. Fior felt that he had a new 

powerful weapon in his possession and, wanting to secure a position as a teacher 

of mathematics, he issued a challenge to Nicolo Fontana, a noted scholar who 

bragged in 1535 that he could solve cubic equations lacking the linear term, that 

is, equations of the form 
3

x + n
2

x  = q.    

 

Tartaglia 

 
Niccolo Fontana, best known as Tartaglia, was born in Brescia, in 

northern Italy, in 1499 or 1500.  In 1512 his home town was sacked by the 

French. Amidst the slaughter, Niccolo was almost killed by a French soldier 

who cut his jaw and palate leaving the teenager boy disfigured and unable to 

speak clearly. He was nicknamed Tartaglia- the Stammerer - and it is by this 

epithet that he is best known today.  

Tartaglia was for the most part an autodidact who taught himself mathematics 

and mechanics. He left Brescia to settle in Verona and then in Venice to earn his 

living as a mathematics teacher. As other teachers and scholars, he had to 

participate in public contests and debates to keep his name and reputation before 

the public. Due to his success in such debates, his reputation gradually grew and 

he became a distinguished mathematician. Thus, challenging and defeating him 

in a public contest would bring fame and reputation to the winner. Tartaglia 

became the perfect target for Fior who was remarkably confident that his 

knowledge of how to solve depressed cubic equations would be enough to 

guarantee the downfall of Tartaglia.  

When the writing mathematical contest was set up, each scholar submitted 30 

problems for the other to solve. The winner would be the one who solved the 

most problems after a certain period of time (30 days according to some sources, 

40 or 50 according to others). The loser would pay for a banquet for 30 people. 
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Tartaglia provided Fior with a list of problems on different mathematical topics. 

In contrast, every one of Fior’s problems was reduced to solving a depressed 

cubic of the type he could solve, placing Tartaglia in a bind. One of the 

problems that Fior proposed to Tartaglia is the following: A man sells a sapphire 

for 500 ducats, making a profit of the cubic root of his capital. How much is this 

profit? (Fauvel & Gray, 1987, p. 254)  

Facing this problematic situation, Tartaglia began a frantic search to find the 

general rule to solve depressed cubic equations. His strenuous efforts paid off 

when, in the early hours of February 13, seven days before the deadline, 

inspiration came over him and Tartaglia managed to discover the method to 

solve these types of equations (unknowns and cubes equal to number). Tartaglia 

solved Fior’s problems in less than two hours, whereas his weak opponent was 

not able to solve Tartaglia’s problems because, as it turned out, Fior’s 

mathematical knowledge did not extend much beyond solving these kinds of 

equations. Tartaglia’s victory was unquestionable, but, magnanimously, he did 

not claim the banquet.  

Again, we can only guess how Tartaglia arrived at his solution, which is 

equivalent to  

2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 – 

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �             

 

One way could have been using del Ferro’s approach, as argued by Katscher 

(2011). Another method, suggested by Katz and Parshall (2014), could have 

been comparing 
3

x  + px = q with the identity ( )
3

u v− +3uv(u – v) =  
3

u  – 
3

v . 

Setting x = u – v, p = 3uv, and q = 
3

u  – 
3

v  amounts to finding u and v in terms 

of p and q.  Using the following algebraic identity, as suggested by Katz and 

Parshall (2014),  
2

3 3

2

u v� �+
� �
� �

= 

2
3 3

2

u v� �−
� �
� �

+ 
3

u
3

v  

del Ferro could have reasoned as follows. Making appropriate substitutions, one 

obtains 
2

3 3

2

u v� �+
� �
� �

= 

2

2

q� �
� �
� �

+ 

3

3

p� �
� �
� �

  

Taking the square root of both sides of this equation, it follows that   

3 3

2

u v+
 = 

2 3

2 3

q p� � � �
+� � � �

� � � �
 

Using the fact that 

3 3

2

u v−
=

2

q
 results in 
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3
u  = 

2 3

2 3

q p� � � �
+� � � �

� � � �
+ 

2

q
 

Taking the cubic root of both sides of this equation results in  

u = 

2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 

Now, using the fact that 
3

u  – 
3

v = q yields  
3

v = 
3

u  – q 

or  

3
v =  

2 3

2 3

q p� � � �
+� � � �

� � � �
+ 

2

q
 – q 

Simplifying and taking the cubic root produces   

v = 

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �
 

and consequently,  

x = u – v = 

2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 – 

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �             

 

 

News of Tartagli’s triumph eventually reached Girolamo Cardano, one of the 

most interesting, extraordinary, and bizarre personages in the entire history of 

mathematics.    

Cardano 

 
In his autobiography De Vita Propria Liber (The Book of My Life), 

Cardano (1576/2002) recounts that, “although various abortive medicine … 

were tried in vain” he was born on September 24, 1501 after having been 

“literally torn from [his] mother’s womb” because she “had been in labor for 

three entire days” and yet he survived. If what he heard is right, Cardano’s birth 

was unwelcome because he was the illegitimate child of Fazio Cardano and 

Chiara Micheria. Even with this shaky start, Cardano would become one of the 

most respected doctors, mathematicians, philosophers, and astrologers of his 

time. In 1552 for example, he traveled to Scotland to treat the Archbishop of St 

Andrews, John Hamilton, who had been suffering from asthma for ten years and 

the condition was worsening. The archbishop recovered completely and this 

success solidified Cardano’s medical reputation. 

Having heard that Tartaglia had a method for solving some cubic equations, 

Cardano, who at this time was a public lecturer at the Piatti Foundation in Milan 

and was writing a book on algebra, was intrigued because he took Pacioli’s 
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words that the solution of the cubic was impossible. For several years Cardano 

tried to discover the elusive formula, but was unsuccessful. In 1539, he 

contacted Tartaglia through an intermediary who told Tartaglia that the formulas 

could be included in a book that Cardano was planning to publish soon. 

Tartaglia declined. Again and again Cardano wrote to him supplicating him to 

reveal the secret, and over and over Tartaglia refused. After much insistence, on 

the promise that Cardano would introduce him to the governor of Milan, one of 

Cardano’s patrons, Tartaglia accepted an invitation to Milan. On March 25, 

1539, at Cardano’s house, Tartaglia revealed the secret of solving cubic 

equations, after making Cardano swear that he was not going to divulge it. 

Tartaglia’s report of the oath sworn by Cardano was:  

I swear to you, by God's holy Gospels, and as a true man of honour, not only 

never to publish your discoveries, if you teach me them, but I also promise you, 

and I pledge my faith as a true Christian, to note them down in code, so that 

after my death no one will be able to understand them. If you want to believe me 

now, then believe me, if not, leave it be. (Fauvel & Gray, 1987, pp. 255).  

Tartaglia encrypted the solution in a poem whose first verse reads as follows:  

When the cube and its things near (
3

x  + px) 

Add to a new number, discrete, (
3

x  + px = q) 

Determine two new numbers different  

By that one; this feat (u – v = q) 

Will be kept as a rule 

Their product always equal, the same, (uv) 

To the cube of a third  

Of the number of things named. (uv = 

3

3

p� �
� �
� �

) 

Then, generally speaking, 

The remaining amount 

Of the cube roots subtracted (x = 
3 u  –  

3 v )  

Will be your desired count (Katz, 2009, p. 400) 

 

Let’s solve the problem about the cost of the sapphire stated above using 

Tartaglia’s process. First, the solution can be represented as 
3

x  + x = 500. 

Following Tartaglia’s method, we need to find two numbers u and v such that u  

–  v = 500 and uv = 

3
1

3

� �
� �
� �

= 
1

27
. Solving this system of equations is equivalent 

to solving the quadratic equation 
2

v + 500v = 
1

27
, whose positive solution is 
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found by applying the quadratic formula v = 

2

2

p
q

� �
+� �

� �
  – 

2

p
 = 

2
500 1

2 27

� �
+� �

� �
  – 250 � 0.0000740741. The solution is then now given by x 

= 
3 u  –  

3 v  � 
3 500.0000740741  – 

3 0.0000740741 � 7.895. 

The complete poem can be found in Fauvel and Gray (1987) or Katscher (2011).  

In the remaining verses of the poem, Tartaglia tells Cardano how to solve the 

cubics 
3

x = px + q and 
3

x  + q = px. Translating the poem into the formula for 
3

x = px + q results in   

x = 

2 3

3

2 2 3

q q p� � � �
+ −� � � �

� � � �
 + 

2 3

3

2 2 3

q q p� � � �
− −� � � �

� � � �
 

In this case, however, evaluating the expression under the square root may 

sometimes not be possible with Cardano’s mathematics because ( )
2

/ 2q  – 

( )
3

/ 3p < 0  amounts to using square roots of negative numbers to find a 

solution of the equation 
3

x = px + q.  This could be fine if it only happened 

when the cubic equations did not have real roots. Cardano, before he wrote his 

Ars Magna, applied Tartaglia’ method to the equation 
3

x = 15x + 4 yielding  

x = 
3 2 121+ − + 

3 2 121− −  

From the appearance of this sophisticated-looking expression, we may conclude 

that the equation 
3

x = 15x + 4 has no real solution. Yet, as we can easily verify, 

this equation has three real roots: x = 4, x = – 2 + 3 , and x = – 2 – 3 . 

Cardano was at loss and asked Tartaglia about it:   

I have sent to enquire after the solution to various problems for which you have 

given me no answer, one of which concerns the cube equal to an unknown plus a 

number. I have certainly grasped this rule, but when the cube of one-third of the 

coefficient of the unknown is greater in value than the square of one-half of the 

number, then, it appears, I cannot make it fit into the equation. (O’Connor & 

Robertson).  

As we can notice from this paragraph, Cardano is also stating the conditions 

under which the formula would involve the use of square roots of negative 

numbers, that is, complex numbers. Tartaglia, of course, did not understand 

complex numbers either so he simply replied to Cardano that “you have not 

mastered the true way of solving problems of this kind, and indeed I would say 

that your methods are totally false” (O’Connor & Robertson). 

Cardano expanded Tartaglia’s ideas and was able to solve all the cases of the 

cubic, including the general third-degree equation of the form 
3

x + n
2

x + px = 
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q. At this point in the story, another character enters into the drama: Ludovico 

Ferrari.  

Ferrari 
 

Ludovico Ferrari was born in 1522 in Bologna. On November 30, 

1536, when Ludovico was just 14 years old, Cardano took him as a servant. 

Cardano almost immediately realized that Ludovico was exceptionally gifted 

and decided to teach him mathematics. Soon Cardano also shared with him 

Tartaglia’s secret method to solve depressed cubics. Working together, they 

made remarkable progress. Cardano solved the general cubic equation by means 

of a transformation that reduces the general cubic equation to a depressed cubic. 

In 1540, Ferrari, applying a similar substitution, reduced the quartic equation to 

a depressed quartic equation, which he then manipulated to transform both sides 

of it into perfect squares. This transformation involved a cubic equation that 

could be solved now using Cardano and Tartaglia’s method. In addition, 

Cardano realized the necessity of imaginary numbers to deal with the irreducible 

case of the cubic (i.e., 
3

x = px + q). In fact, Cardano constructs examples with 

the sole goal of showing that this irreducible case of the cubic involves 

imaginary numbers that he manipulates as if they followed all the properties of 

common numbers. Cardano and Ferrari were now in possession of powerful 

mathematical discoveries that had eluded mathematicians for centuries. The two 

scholars, however, could not publish their discoveries without breaking 

Cardano’s solemn promise.    

Cardano kept his promise for several years but he must have slowly realized that 

Fior could have not issued the challenge without knowing how to solve the 

equation and, given that Fior was not a talented mathematician, it meant that del 

Ferro had discovered it and then passed it on to his student. In 1543, Cadano and 

Ferrari traveled to Bologna where they looked through del Ferro’s papers.  Their 

inspection led them to conclude that del Ferro had discovered the solution of one 

of the forms of the cubic equation. To Cardano, the implications of the 

discovery were clear: he was no longer bound by the oath. And so in 1545, 

Cardano published his great masterpiece, Ars Magna, which consisted of 40 

chapters. With most scrupulous care, he clearly acknowledged that the solution 

of the equation 
3

x + px = q had been discovered by del Ferro and rediscovered 

independently by Tartaglia, and that he himself had extended the solution to 

equations 
3

x  = px + q and 
3

x + q = px. He also credits Ferrari with having 

solved the quartic equation.  

Ars Magna 
 

Once Ars Magna appeared in print, it reached scholars all over Europe, 

including Tartaglia. Tartaglia was in rage. In his eyes, Cardano had violated a 

sacred oath in spite of the fact that he (Cardano) had not taken credit as the 

original discoverer. The following year Tartaglia published a book entitled “New 

Problems and Inventions” in which he recounts his side of the story. Ferrari, not 

Cardano, replied to the accusations challenging Tartaglia to a public 
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competition.  Tartaglia initially refused because Ferrari was still a relatively 

unknown mathematician again whom even a triumph would do little practical 

good.  The two men exchanged letters full of charges and insults for about a 

year. Suddenly, in 1548, Tartaglia received an offer of a professorship on the 

condition that he wins a contest against Ferrari. Expecting to defeat Ferrari, 

Tartaglia accepted. The debate took place in Milan on August 10, 1548. Ferrari 

understood the solutions of cubics and quartics while Tartaglia had not mastered 

these chapters of the Ars Magna. Thus, the contest culminated with Tartaglia’s 

defeat as he withdrew from the competition.  

Ars Magna contains a complete description of how to solve any type of cubic 

equation and provides geometric arguments to justify why the method works. 

Cardano’s theory of the solution of the cubic starts in chapter XI: On the cube 

and First Power Equals to the Number.  Following the tradition, Cardano did not 

give a general proof of the solution to this type of equation but rather uses a 

specific example
3

x  + 6x = 20 to justify the general rule. Cardano’s solution 

reads as follows:  

Cube one-third the coefficient of x; add to it the square of one-half the constant 

of the equation; and take the square root of the whole. You will duplicate this, 

and to one of the two you add one-half the number you have already squared 

and from the other you subtract one-half the same. You will then have a 

binomium and its apoteme. Then, subtracting the cube root of the apoteme from 

the cube root of the binomium, the remainder or that which is left is the value of 

x (pp. 98-99).  

According to Cardano’s recipe to solve 
3

x  + 6x = 20, the first step is to cube a 

third of the coefficient of x to obtain 

3
6

3

� �
� �
� �

 = 8. Second, take the square of one-

half 20 (100) and add it to 8 to yield 108. Third, take the square root of 108. 

Fourth, add and subtract half of the constant term (10) to get 108 + 10 and 

108  – 10. Finally, the solution is the difference of the cube root of these two 

last numbers, namely, x = 
3 108 10+   – 

3 108 10− . Cardano noticed 

that 
3 108 10+   – 

3 108 10−  = 2 stating that “is perfectly clear if it is 

tried out.” (p. 100).  

  To justify his procedure, Cardano imagined a cube (Branson, 2013; Duhnam, 

1990; Laubenbacher & Pengelly, 1999) with edge u partitioned into six 

parallelepipeds, as shown in figure 1. Here u and v are auxiliary variables to be 

determined.  The volume of the cube with edge u can be expressed as the sum of 

the six parallelepipeds,  

3
u  = 

3
v  + ( )2

v u v−  + 2uv(u – v) + ( )
3

u v− + v ( )
2

u v−  

Rearranging the terms and factoring (u – v) produces  

3
u  – 

3
v = ( )

3
u v− + (u – v)(

2
v  + 2uv + uv –  

2
v ) 
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= ( )
3

u v− +3uv (u – v) 

Of course, this identity can nowadays be derived in a straightforward way using 

simple algebra. Notice however, that following Euclid’s tradition this approach 

was not available to Cardano. Comparing the identity ( )
3

u v− +3uv (u – v) = 

3
u  – 

3
v  with the equation 

3
x  + px = q led Cardano to conclude that letting x = 

u – v, p = 3uv, and q = 
3

u  – 
3

v  would transform the problem of solving for x 

into the equivalent problem of determining u and v (in terms of p and q). Once u 

and v are determined, the value of x can be determined as well. Ars Magna does 

not discuss a derivation of representing u and v in terms of p and q.  Rather, its 

author simply provided the verbal rule with a specific example, as presented 

above. The derivation is as follows: From 3uv = p, we obtain u = 
3

p

v
, which we 

then substitute in the second expression to yield  
3

327

p

v
 – 

3
v = q  

Multiplying both sides of this equation by 
3

v and rearranging the terms 

produces 

6
v   + q

3
v  – 

3

27

p
 = 0   

This equation is a quadratic equation in
3

v :  

( )
2

3v  + q ( )3
v = 

3

27

p
        

Applying the quadratic formula to the last equation yields  

3
v  =   

2 3

2 3

q p� � � �
+� � � �

� � � �
– 

2

q
 

Now, taking the cubic root produces  

v = 

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �
 

Now, using the fact that 
3

u  – 
3

v = q yields  
3

u = q + 
3

v  

=  
2

q
 + 

2 3

4 27

q p
+  
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u = 

2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 

We now have Cardano’s implicit formula to solve equations of the type 
3

x  + px 

= q:  

x = u – v = 
2 3

3

2 3 2

q p q� � � �
+ +� � � �

� � � �
 –  

2 3

3

2 3 2

q p q� � � �
+ −� � � �

� � � �
 

Cardano was able to solve the three types of depressed cubics. What about the 

general cubic equation of the form 
3

ax + 
2

bx  + cx + d = 0 or 
3

x + n
2

x + px = 

q? It was Cardano’s great discovery that a general cubic equation could be 

transformed into a depressed cubic by a suitable substitution, namely x = y – 

(b/3a) (Burton, 2011; Dunham, 1990). The process is as follows:  

Substituting x = y – b/3a = y – n/3 in 
3

x + n
2

x + px = q yields  

3

3

n
y

� �
−� �

� �
+ n

2

3

n
y

� �
−� �

� �
+ p

3

n
y

� �
−� �

� �
 = q 

Expanding the left side of this equation becomes  

 
3y  – 

23
3

n
y  + 

2

3
9

n
y  – 

3

27

n
 + 

2ny  – 

2

2
3

n
y  + 

3

9

n
 + py – 

3

pn
= q 

or 

 
3y  – 

2ny  + 

2

3

n
y  – 

3

27

n
 + 

2ny  – 

22

3

n
y  + 

3

9

n
 + py – 

3

pn
= q 

Simplifying, this becomes  

  
3y  + 

23

3

p n
y

� �−
� �
� �

  = 

39 2 27

27

pn n q− +
 

This equation can be solved using the formula for depressed cubics with n = 
23

3

p n−
 and q = 

39 2 27

27

pn n q− +
.  

Discussion and Conclusion 

 
The formula to solve third-degree equations in one variable are commonly 

referred to as Cardano’s formula or technique (Berlinghoff & Gouvêa, 2004; 

Burton, 2011; Calinger, 1999; Inving, 2013; Krantz, 2010; Laubenbacher & 

Pengelley, 1999). But as we can see, the formula was actually first discovered 

by del Ferro and then independently by Tartaglia. Cardano developed and 

justified the corresponding formula for every possible case of a cubic equation. 

Nowadays, of course, we have only one cubic formula. To do justice to all 

mathematicians who contributed to its development, the formula should be 

called del Ferro-Tartaglia-Cardano’s formula.  



 

Journal of Mathematical Sciences & Mathematics Education Vol. 9 No. 2      36 

Ars Magna played a significant role in the development of algebra, including 

modern algebra. As Felix Klein wrote “This work, which is of great value, 

contains the germ of modern algebra, surpassing the bounds of ancient 

mathematics” (Cited in Gindikin, 1988). To start, Ars Magna, took the art of 

solving equations to new heights. It contains significant results that neither 

ancient nor Easter mathematicians knew. Specifically, it contains the complete 

solution of solving general cubic and quartic equations in one variable by 

radicals, along with geometric arguments to justify the appropriate method. 

Cardano went beyond del Ferro and Tartaglia’s initial contributions.  

Second, Ars Magna includes some examples of when the formula involves the 

square roots of negative numbers (in modern notation when the discriminant is 

negative). It also discusses the paradoxical case of a cubic having three real 

solutions and yet the formula involves the square root of negative numbers. 

Cardano clearly realized the existence of what we now call complex numbers, 

even though he ended up dismiss them, except in one problem.  Cardano 

realized that if one manipulates the expressions involved in said problem, 

putting aside the mental tortures involved (Cardano, 1945/1968), one can obtain 

its solution, a situation that he called truly sophisticated. Thus, is the first 

mathematician who introduced complex numbers into algebra (van der 

Waweden, 1983; Varadarajan, 1998). By bringing complex numbers to the 

forefront, Ars Magna triggered the investigation of complex numbers.  

Last, but not least, Ars Magna also motivated the investigation of equations of 

degree five and higher, culminating in the works of Abel and Galois. Thus, Ars 

Magna made significant contributions to the development of mathematics in 

general and algebra in particular. As stated by Cardano (1545), “Written in five 

years, may it last as many thousands” (p. 261).  

 

v

u

u

v

vu - v

v

u - v

u - v v

 
Figure 1: Cardano’s Cube 
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