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Abstract 
 

 Cryptosystems may be classified as either public key or private key. The 

system developed in this paper combines the protocols of these two types of 

cryptography. Techniques and characteristics of previously established 

cryptosystems are employed as well to produce a three-pass system that is more 

secure than these earlier systems. Each transmission in the correspondence 

protocol is at least triply encrypted. The system is also both polygraphic and 

polyalphabetic in nature. Furthermore, a digital signature enhances the system 

security by enabling the recipient of an encrypted message to authenticate the 

identity of the sender. Finally, a greater computational efficiency is achieved 

than exists in similar previously established systems due to recent results in 

number theory. 

 

Introduction 

 

 In 1978 Ronald Rivest, Adi Shamir, and Leonard Aldeman produced the 

RSA public key cryptosystem [9] based on Euler’s Theorem. This system was 

later patented in 1983 [10]. The first private key three-pass system was 

developed by Adi Shamir around 1980 [4, p. 345]. Also known as Shamir’s  

no-key protocol [7, p. 535], this system requires three transmissions to complete 

the transfer of information to the recipient in a form that can be successfully 

deciphered [7, p. 500, no. 12.22]. In 1982 James L. Massey and Jim K. Omura 

produced the Massey-Omura three-pass private key cryptosystem [5, p. 174], 

whose mathematical basis is Fermat’s Theorem, and which was patented in  

1986 [6]. Considered to be an improvement of the Shamir three-pass system,  

the Massey-Omura Cryptosystem is a private key, three-pass, exponential 

system which uses a prime modulus. By the late 1980’s such three-pass systems 

were eventually developed into three-pass, zero-knowledge protocol systems 

([2],[3],[8, pp. 255-256]).  

 In 2007 Richard A. Winton developed two cryptosystems [12] which 

resemble the Massey-Omura system ([5, p. 174],[6]) but are more secure. 

Specifically, the Enhanced Massey-Omura 1 (EMO-1) Cryptosystem [12] is a 

private key three-pass system which replaces the prime modulus of the Massey-

Omura system with a composite modulus to increase the difficulty of 

cryptanalysis. Also a three-pass system, the Enhanced Massey-Omura 2  

(EMO-2) Cryptosystem [12] combines the private key protocol of the Massey-

Omura system and the composite modulus of the EMO-1 system with the public 

key protocol of the RSA system. As a result, the EMO-2 protocol increases the 

security of the Massey-Omura and EMO-1 systems by providing double 
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encryption on each transmission, as well as a digital signature [11, p. 300] which 

enables the recipient of an encrypted transmission to authenticate the identity of 

the sender. 

 Similar to the EMO-2 Cryptosystem [12], the Winton Cryptosystem [14] 

published in 2012 is a partially private key, partially public key three-pass 

system which combines the methods of the EMO-1 and RSA systems. 

Furthermore, its correspondence protocol is based primarily on that of the  

EMO-2 Cryptosystem. However, the Winton Cryptosystem contains 

characteristics which make it both more secure and more efficient than the 

EMO-2 system. 

 Although each transmission in the EMO-2 Cryptosystem [12] is doubly 

encrypted, the security of the transmissions is vulnerable due to the fact that the 

key center knows all of the cryptological parameters and keys of the system. 

Consequently there is a risk that an employee at the key center could read the 

messages of the network members, or could even sell knowledge of these keys 

to others. The Winton Cryptosystem [14] addresses this vulnerability by 

ensuring that each of the transmissions in the three-pass correspondence 

protocol is secured with a cryptological lock to which only the recipient of that 

specific transmission holds the key. Furthermore, even though the key center has 

the keys with which each transmission is encrypted, the decryption key not 

known to the key center in each transmission cannot be calculated with the 

parameters known to the key center. In this manner the multiple encryption and 

digital signature provided by the EMO-2 system are maintained by the Winton 

Cryptosystem, but the key center is unable to decipher any of the transmissions 

in the three-pass protocol. 

 Finally, the encryption and decryption processes of both the EMO-1 and 

EMO-2 Cryptosystems [12] are based on Euler’s Theorem. Consequently these 

systems have a somewhat limited computational efficiency due to the size of the 

prime factors of the system moduli. However, results in number theory 

established in 2009 by Richard A. Winton [13] enable the Winton Cryptosystem 

[14] to operate with a greater computational efficiency than the EMO-1 and 

EMO-2 systems by reducing the sizes of the prime factors of the system moduli 

to approximately the square roots of their sizes in both the EMO-1 and EMO-2 

systems.  

 

The Winton-Bass Cryptosystem 

 

 Similar to the EMO-2 Cryptosystem [12] and Winton Cryptosystem [14], 

the Winton-Bass Cryptosystem presented here is a three-pass system which uses 

both private key and public key cryptography by combining the methods of the 

EMO-1 [12] and RSA [5, pp. 150-160] systems. Furthermore, the Winton-Bass 

correspondence protocol is based primarily on that of the EMO-2 and Winton 

Cryptosystems. Like the Winton Cryptosystem, the Winton-Bass system 

attaches a cryptological lock to each of the transmissions in the three-pass 

protocol for which only the recipient of that particular transmission holds the 

decryption key, so that even key center personnel cannot decipher intercepted 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 11 No. 2     3 

messages. The digital signature of the EMO-2 and Winton systems which 

enables the recipient of a message to authenticate the identity of the sender is 

also retained in the Winton-Bass system. Finally, the number theoretic results 

([13, Theorem 8],[13, Corollary 10]) employed by the Winton system to 

improve the computational efficiency of the EMO-2 system are incorporated 

into the Winton-Bass system. 

 However, the Winton-Bass Cryptosystem contains characteristics which 

make it more secure than the EMO-1, EMO-2, and Winton systems. While the 

EMO-2 and Winton systems provide at least double encryption in each 

transmission of the three-pass protocol, each transmission of the Winton-Bass 

system is at least triply encrypted for enhanced security. Furthermore, the 

Winton-Bass Cryptosystem also uses matrix encryption and decryption, 

resulting in a system which is polygraphic [5, p. 103]. Finally, the matrix 

encryption simultaneously produces a system which is polyalphabetic, a 

characteristic which is desirable since it disguises the natural frequencies of the 

alphabet characters [5, p. 45]. 

 The mathematical details of the characteristics of the Winton-Bass 

Cryptosystem discussed above will be explained later. First, however, the 

system structure and correspondence protocol are presented. 

 

System Structure 
 

 In order to construct a Winton-Bass Cryptosystem for a network of 

correspondents, the key center first performs the following functions. 

 

1. An alphabet A is selected. 

2. A size α for a square matrix is selected, where α is an integer and α > 1. 

3. A maximum string length of β alphabet characters is determined. 

 Thus the maximum message length per transmission is αβ characters. 

4. A scheme S is determined to convert alphabetic strings of length β to  

 unique positive integers in a one-to-one correspondence and vice versa. 

5. The largest integer L which can represent a character string is determined  

 based on the alphabet A, the maximum string length β, and the scheme S. 

6. Distinct primes p and q are selected such that pq > L. 

7. The network modulus n = pq > L and φ(n) = (p−1)(q−1) are computed. 

8. An α×α nonsingular, diagonal system encryption matrix Q is constructed  

 so that the diagonal entries { }α
=1iiiQ  of Q are distinct (nonzero) least  

 residues modulo n which are relatively prime to n. 

9. For each network member, a least residue iw  modulo φ(n) is selected  

 as a primary encryption key such that { })n(,wgcd i φ  = 1. 

10. For each primary encryption key iw , ix  = 1

iw− (mod φ(n)) is computed  

 as a primary decryption key.  

11. Each network member is provided with their individual primary  

 encryption and decryption keys iw  and ix , respectively. 
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12. Parameters A, Q, S, L, α, β, and n are published in the center directory.  

 On the other hand, iw  and ix  are private keys, and are thus known only  

 to the key center and the network member to whom they are assigned. 

 

 After the functions above are performed by the key center, each network 

member individually performs the following functions. 

 

13. Each member selects distinct primes ip  and iq  such that iiqp  > n. 

14. Each member computes their own personal modulus in  = iiqp  > n and  

 )n( iφ  = )1q)(1p( ii −− . 

15. Each member selects a least residue iy  modulo )n( iφ  as a secondary  

 encryption key such that iy  ≠ iw , iy  ≠ ix , and { })n(,ygcd ii φ  = 1. 

16. Each member computes iz  = 1

iy− (mod )n( iφ ) as a secondary decryption  

 key. 

17. Each member publishes their encryption key iy  and modulus in  in the  

 key center directory, keeping the decryption key iz  private. 

 

 Thus the parameters published in the key center directory include A, Q, S, 

L, α, β, n, { }in , and { }iy . Furthermore, the key center knows p, q, φ(n), { }iw , 

and { }ix . Each network member also knows their individual private keys iw , 

ix , and iz , as well as the parameters ip , iq , and )n( iφ . It is important to note 

that the key center does not know any of { }iz , { }ip , { }iq , and { })n( iφ . Since the 

moduli { }in  are sufficiently large, then the key center cannot factor in  = iiqp  

to obtain ( )inφ  = ( )( )1q1p ii −− . Therefore the key center is unable to compute 

the decryption keys iz  = ( )( )i

1

i nmody φ−  in order to decipher encrypted system 

messages. The inability of even the key center to decipher encrypted 

correspondence between members of its own system is a substantial security 

feature first introduced in the Winton Cryptosystem [14] in 2012 and retained in 

the Winton-Bass system. 

 

Correspondence Protocol 

 

 Suppose that Bob and Sue are members of a Winton-Bass Cryptosystem 

network with system encryption matrix Q and system modulus n. Suppose 

further that Bob has personal modulus in  = h and keys iw  = r, ix  = t, iy  = c, 

and iz  = b, while Sue has personal modulus jn  = k and keys jw  = u, jx  = v, 

jy  = e, and jz  = d. For Bob to send a message to Sue, the following protocol is 

observed. 

 

1. Bob constructs his message m using the alphabet A, filling in trailing  
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 alphabet characters as needed to obtain the maximum message length  

 of αβ characters in a manner that does not obscure the intended  

 message when deciphered. 

2. Bob separates m into α blocks { }α
=1iim  of β alphabet characters each. 

3. For 1 ≤ i ≤ α, Bob converts im  to its numerical equivalent iiP  ≤ L  

 using the scheme S. 

4. Bob constructs the α×α diagonal matrix P with diagonal entries iiP   

 for 1 ≤ i ≤ α. 

5. Bob enciphers P by computing M = PQ (mod n). 

6. Bob further enciphers M by computing rM (mod n). 

7. Bob further enciphers M by computing ( )er )n(modM (mod k) and  

 sends the result to Sue. 

8. Sue partially deciphers the transmission by computing  

 ( )[ ] )k(mod)k(mod)n(modM
der  = ( )edr )n(modM (mod k) = rM (mod n). 

 

  Since M is a diagonal matrix, then rM (mod n) is also a diagonal  

 matrix with diagonal entries [ ]{ }α

=1iii

r
)n(modM  = { }α

=1iid . Then  

 ( ) )k(mod)n(modM
edr  is a diagonal matrix with diagonal entries  

 { }α

=1i

ed

i )k(modd . For 1 ≤ i ≤ α, id  is a least residue modulo n, so that  

 id  < n < k, and so id|k / . Therefore )k(modded

i  = )k(modd i  since  

 d = 1e− (mod φ(k)) [13, Corollary 10]. Furthermore, )k(modd i  = id   

 since id  < n < k. Thus ( )edr )n(modM (mod k) = ( ))n(modM r (mod k) =  

 rM (mod n). 

 

9. Sue adds encryption by computing ( )ur )n(modM (mod n) = ruM (mod n). 

10. Sue adds more encryption by computing ( )cru )n(modM (mod h) and 

sends  

 the result back to Bob. 

11. Bob partially deciphers the transmission by computing  

 ( )[ ] )h(mod)h(mod)n(modM
bcru  = ( )cbru )n(modM (mod h) =  

 ruM (mod n). 

 

  Similar to step 8 above, since ii

ru )]n(modM[  < n < h and  

 b = 1c− (mod φ(h)), then ( )cbru )n(modM (mod h) = ( ))n(modM ru (mod h)  

 [13, Corollary 10] = ruM (mod n). 
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12. Bob further deciphers the transmission by computing  

 ( )tru )n(modM (mod n) = ( )rtuM (mod n) = uM (mod n). 

 

  Since M = PQ (mod n) then iiM  < n for 1 ≤ i ≤ α, so that iiM|n / .  

 Thus either iiM|p /  or iiM|q /  since n = pq and p ≠ q. Consequently either  

 u

iiM|p/  or u

iiM|q / , and so u

iiM|n / . Hence ( )rtu

iiM (mod n) = u

iiM (mod n)  

 since t = 1r− (mod φ(n)) [13, Corollary 10], and so ( )rtuM (mod n) =  

 uM (mod n). 

 

Case 1: h ≤ k 

 

13. Bob adds the digital signature for authenticating the identity of the  

 sender by computing ( )bu )n(modM (mod h). 

14. Bob adds a layer of encryption by computing  

 ( )[ ] )k(mod)h(mod)n(modM
ebu  and sends the result to Sue. 

15. Sue partially deciphers the transmission by computing  

 ( )[ ] )k(mod)k(mod)h(mod)n(modM

d
ebu







 =  

 ( )[ ] )k(mod)h(mod)n(modM
edbu  = ( )bu )n(modM (mod h) as in  

 step 8 since ( ) ii

bu )]h(mod)n(modM[  < h ≤ k for 1 ≤ i ≤ α and  

 d = 1e− (mod φ(k)) [13, Corollary 10].  

16. Sue continues deciphering the transmission by computing  

 ( )[ ] )h(mod)h(mod)n(modM
cbu  = ( )bcu )n(modM (mod h) =  

 uM (mod n) as in step 11 since ii

u )]n(modM[  < n < h for 1 ≤ i ≤ α  

 and c = 1b− (mod φ(h)) [13, Corollary 10].  

 

Case 2: h > k 

 

13. Bob adds a layer of encryption by computing ( )eu )n(modM (mod k). 

14. Bob adds the digital signature for authenticating the identity of the  

 sender by computing ( )[ ] )h(mod)k(mod)n(modM
beu  and sends the  

 result to Sue. 

15. Sue partially deciphers the transmission by computing  

 ( )[ ] )h(mod)h(mod)k(mod)n(modM

c
beu







 =  
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 ( )[ ] )h(mod)k(mod)n(modM
bceu  = ( )eu )n(modM (mod k) as in  

 step 11 since ( ) ii

eu )]k(mod)n(modM[  < k < h for 1 ≤ i ≤ α and  

 c = 1b− (mod φ(h)) [13, Corollary 10]. 

16. Sue continues deciphering the transmission by computing  

 ( )[ ] )k(mod)k(mod)n(modM
deu  = ( )edu )n(modM (mod k) =  

 uM (mod n) as in step 8 since ii

u )]n(modM[  < n < k for 1 ≤ i ≤ α  

 and d = 1e− (mod φ(k)) [13, Corollary 10]. 

 

Protocol Completion 

 

17. In either case, Sue continues the deciphering process by computing  

 ( )vu )n(modM (mod n) = uvM (mod n) = M (mod n) as in step 12 since  

 iiM  < n for 1 ≤ i ≤ α and v = 1u− (mod φ(n)) [13, Corollary 10]. 

18. Sue completes the deciphering process by computing 
1

MQ
−

(mod n) =  

 
1

PQQ
−

(mod n) = P (mod n) = P since iiP  ≤ L < n for 1 ≤ i ≤ α. 

 

  Since the diagonal entries { }α
=1iiiQ  of Q are nonzero least residues  

 modulo n and { }n,Qgcd ii  = 1 for 1 ≤ i ≤ α, then 1

iiQ− (mod n) exists and  

 is unique for 1 ≤ i ≤ α [11, p. 139, Theorem 4.10]. Furthermore, the  

 calculation of each 1

iiQ− (mod n) is achieved using an extended version  

 of the Euclidean Algorithm [11, p. 141, Example 4.15]. Hence the α×α  

 diagonal matrix with diagonal entries { }α

=
−

1i

1

ii n(modQ  is 
1

Q
−

(mod n), so  

 that Q
1

Q
−

(mod n) = αI , the α×α identity matrix. 

 

19. Sue next converts the diagonal entries { }α
=1iiiP  of P to their alphabetic  

 equivalents { }α
=1iim  using the scheme S. 

20. Sue concatenates the character strings { }α
=1iim  to reconstruct and read  

 Bob’s message m. 

 

 The correspondence protocol of the Winton-Bass Cryptosystem is 

illustrated in Figure 1 below. Figure 1 corresponds to Case 1 in which h ≤ k.  

A similar flowchart can easily be constructed for Case 2 in which h > k. 
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Figure 1 

 

Bob (n,r,t;h,c,b) (h ≤ k) Sue (n,u,v;k,e,d) 

↓ 
m 

↓ 
P 

↓ 
PQ (mod n)=M 

↓ 
rM (mod n) 

↓ 

( )er )n(modM (mod k)  → ( )er )n(modM (mod k) 

     ↓ 

     ( )edr )n(modM (mod k)= rM (mod n) 

     ↓ 

     ruM (mod n) 

     ↓ 

( )cru )n(modM (mod h) ← ( )cru )n(modM (mod h) 

↓ 

( )cbru )n(modM (mod h)= ruM (mod n) 

↓ 
rutM (mod n)= uM (mod n) 

↓ 

( )bu )n(modM (mod h) 

↓ 

( )[ ] )k(mod)h(mod)n(modM
ebu  → ( )[ ] )k(mod)h(mod)n(modM

ebu  

     ↓ 

     ( )[ ] )k(mod)h(mod)n(modM
edbu = 

     ( )bu )n(modM (mod h) 

     ↓ 

     ( )bcu )n(modM (mod h)= uM (mod n) 

    ↓ 

    uvM (mod n)=M (mod n) 

    ↓ 

    
1

MQ
−

(mod n)=
1

PQQ
−

(mod n)=P 

    ↓ 
    m 
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Concluding Remarks 

 

 The encryption matrix Q in step 8 of the system structure is constructed 

so that the diagonal entries { }α
=1iiiQ  of Q are distinct least residues modulo n 

which are relatively prime to n. Therefore each diagonal entry is nonzero and 

invertible modulo n. Thus Q is nonsingular modulo n, and 
1

Q
−

(mod n) is also a 

diagonal matrix with diagonal entries ii

1 )]n(modQ[ −  = 1

iiQ− (mod n) for 1 ≤ i ≤ 

α. Furthermore, since the diagonal entries of Q are distinct, then identical 

diagonal entries of the matrix P constructed in step 4 of the correspondence 

protocol, which represent identical alphabetic character strings, are encrypted 

differently. Hence the Winton-Bass Cryptosystem is polyalphabetic [5, p. 45]. 

Also note that each diagonal entry of P numerically represents a block of β 

alphabet characters. Consequently the Winton-Bass Cryptosystem is polygraphic 

as well [5, p. 103]. Finally, since each of P, Q, and 
1

Q
−

 is diagonal, then 

multiplication of these matrices modulo n in correspondence protocol steps 5 

and 18 is accomplished by multiplying their corresponding diagonal entries and 

reducing each individual resulting diagonal entry modulo n. For example, the ii-

entry of PQ (mod n) in protocol step 5 is simply iiiiQP (mod n). 

 Note that in step 9 of the system structure the primary encryption key iw  

is selected such that { })n(,wgcd i φ  = 1. Therefore iw  is an element of the group 

of units modulo φ(n) [1, p. 97, Example 3.1.4]. Consequently, the existence and 

uniqueness of the primary decryption key ix  = 1

iw− (mod φ(n)) calculated in 

step 10 is guaranteed [11, p. 139, Theorem 4.10]. Since the secondary 

encryption key iy  is selected in step 15 of the system structure such that 

{ })n(,ygcd ii φ  = 1, a similar argument exists for the calculation of iz  = 

1

iy− (mod )n( iφ ) in step 16. Furthermore, the computation of ix  and iz  can be 

achieved using an extended version of the Euclidean Algorithm [11, p. 141, 

Example 4.15]. 

 In step 1 of the correspondence protocol the sender is instructed to 

construct his message m using the alphabet A, filling in trailing alphabet 

characters as needed to obtain the maximum message length of αβ characters in 

a manner that does not obscure the intended message when deciphered. One 

common manner by which this is accomplished is to complete the intended 

message m and add trailing X’s until αβ alphabet characters have been used. 

 In steps 13 and 14 of the correspondence protocol, the sender must 

determine the order in which to apply the exponents b and e based upon whether 

h ≤ k or h > k. Note that the moduli h and k are published in the key center 

directory. Therefore the information necessary for making such a decision is not 

only available to both the sender and recipient, but the sender and recipient are 

each required to use both h and k in the three-pass correspondence protocol. 

Actually, if h = k then the order in which b and e are applied is irrelevant. 

However, the key center would not allow a situation in which h = k. 
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 The EMO-2 and Winton Cryptosystems ([12],[14]) provide at least 

double encryption with each transmission in the three-pass protocol to make 

cryptanalysis by interceptors more difficult. However, the inclusion of the 

matrix encryption in step 5 of the Winton-Bass protocol, combined with the 

other encryptions similar to those of the Winton Cryptosystem, achieves at least 

triple encryption with each transmission. In fact, protocol step 10 actually results 

in a quadruple encryption before Sue transmits to Bob. While it may appear that 

the exponentiations performed in protocol steps 13 and 14 produce another 

quadruple encryption, this is not the case. For h and c = 1b− (mod φ(h)) are 

published, making it relatively simple for an interceptor who understood the 

system structure and protocol to remove the exponent b by applying the key c 

modulo h. Thus the exponentiation by b provides no real additional encryption, 

but instead serves as the digital signature by which the recipient can verify the 

sender’s identity [11, p. 300]. For if the recipient applies the sender’s public 

encryption key c and the results (after the rest of the deciphering process) yield 

readable text, then the message must have been previously encrypted by the 

sender with the exponent b. However, b is the sender’s private decryption key 

known only by the sender. Consequently the sender’s identity is authenticated 

by the recipient. 

 Similar to the EMO-2 and Winton Cryptosystems ([12],[14]), the primary 

keys assigned initially (r ant t for Bob; u and v for Sue) are used with the 

Massey-Omura protocol ([5, p. 175],[6]). The secondary keys assigned (c and b 

for Bob; e and d for Sue) are used with the RSA protocol ([5, p. 152],[9],[10]). 

 Each of the primary encryption keys ( iw  = r and jw  = u) used in each 

transmission has a corresponding decryption key known only to the key center 

and either the sender or recipient. Similar to the EMO-1 and EMO-2 systems 

[12], only the key center has knowledge of p and q. Therefore, even though n is 

published, it is difficult to factor n = pq, and thus to compute φ(n) = (p−1)(q−1), 

for sufficiently large n [5, pp. 157-158, Question 4]. Consequently, even if an 

interceptor gains access to the system modulus n and network member’s private 

primary encryption key, say jw , the interceptor cannot compute the network 

member’s corresponding key jx  = 1

jw− (mod φ(n)) for decryption purposes. The 

key center, however, knows the keys { }ix , and thus has the ability to remove an 

encryption produced with the key jw . 

 In contrast, and similar to the Winton Cryptosystem [14], each secondary 

encryption key iy  has a corresponding decryption key iz  known only to the 

network member who selects iy . Furthermore, that network member’s 

corresponding modulus in  = iiqp  has prime factors ip  and iq  known only to 

that member. Therefore even though in  is published, it is difficult for anyone 

else to factor in  = iiqp , and thus to compute )n( iφ  = ( ip −1)( iq −1), whenever 

in  is sufficiently large. Consequently, even with in  and iy  being published, the 

key iz  = ))n((mody i

1

i φ−  cannot be computed for decryption purposes by 
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anyone other than the network member to whom iz  is assigned. Hence none of 

the three transmissions can be deciphered by an interceptor, including the key 

center itself.  

 The correspondence protocol of the Winton-Bass Cryptosystem is 

accomplished by successive exponentiations relative to different moduli. 

Furthermore, although [ ] )n(mod)n(moda
tr  ≡ )n(moda rt , in general we have 

[ ] )n(mod)n(moda 2

t

1

r  ≡/  [ ] )n(mod)n(moda 1

r

2

t . Note however that all the 

moduli (n and { }in ) used in the three-pass protocol are published, and thus are 

accessible by all network members. As a result, this potential problem with the 

decryption process is avoided by encrypting with sequential exponentiations in 

order of increasing corresponding moduli. 

 Finally, since decryption in the EMO-1 and EMO-2 Cryptosystems is 

based on Euler’s Theorem, then the prime factors p and q of the modulus n in 

those systems are selected so that if L is the largest possible numerical 

equivalent of a message, then p > L and q > L [12]. These conditions for p and q 

are necessary to guarantee that the numerical representation of any message is 

relatively prime with the modulus for the application of Euler’s Theorem during 

decryption. Consequently n = pq > 2L , requiring a relatively large modulus n. 

However, similar to the Winton Cryptosystem [14], the decryption process in 

the Winton-Bass Cryptosystem is based on results established in 2009 by 

Richard A. Winton [13] rather than Euler’s Theorem. More specifically, the 

selection of the prime factors p and q of the primary modulus n require only that 

n = pq > L  

([13, Theorem 8],[13, Corollary 10]). Hence the network modulus n of the 

Winton-Bass Cryptosystem is on the order of the square root of the moduli of 

the EMO-1 and EMO-2 Cryptosystems. Furthermore, the same principle is 

applied to the selection of the prime factors { }ip  and { }iq  for the individual 

secondary moduli { }in . Consequently, these substantially smaller moduli enable 

the Winton-Bass Cryptosystem to operate with a greater computational 

efficiency than the EMO-1 and EMO-2 systems. 

 

† Richard Winton, Ph.D., Tarleton State University, USA 
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