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Abstract 

 

In recent years, many researchers have considered a generalization of 

the Pearson system, known as generalized Pearson system of probability 

distributions. In this paper, we have reviewed these new classes of continuous 

probability distribution which can be generated from the generalized Pearson 

system of differential equation. We have identified as many as 15 such 

distributions. It is hoped that the proposed attempt will be helpful in designing a 

new approach of unifying different families of distributions based on the 

generalized Pearson differential equation, including the estimation of the 

parameters and inferences about the parameters. 

 

1. Introduction: Pearson System of Distributions 

 

A continuous distribution belongs to the Pearson system if its pdf  (probability 

density function) f  satisfies a differential equation of the form 
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where a ,  b ,  c ,  and d  are real parameters such that f  is a .pdf  The 

shapes of the pdf  depend on the values of these parameters, based on which 

Pearson (1895, 1901) classified these distributions into a number of types known 

as Pearson Types I – VI.  Later in another paper, Pearson (1916) defined more 

special cases and subtypes known as Pearson Types VII - XII. Many well-

known distributions are special cases of Pearson Type distributions which 

include Normal and Student’s t  distributions (Pearson Type VII), Beta 

distribution (Pearson Type I), Gamma distribution (Pearson Type III) among 

others. For details on these Pearson system of continuous probability 

distributions, the interested readers are referred to Johnson et al. (1994). 

 

2. Generalized Pearson System of Distributions  

 

A continuous distribution belongs to the Pearson system if its pdf  (probability 

density function) f  satisfies a differential equation of the form 
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where a ,  b ,  c ,  and d  are real parameters such that f  is a .pdf  The 

shapes of the pdf  depend on the values of these parameters, based on which 

Pearson (1895, 1901) classified these distributions into a number of types known 

as Pearson Types I – VI.  Later in another paper, Pearson (1916) defined more 

special cases and subtypes known as Pearson Types VII - XII. Many well-

known distributions are special cases of Pearson Type distributions which 

include Normal and Student’s t  distributions (Pearson Type VII), Beta 

distribution (Pearson Type I), Gamma distribution (Pearson Type III) among 

others. For details on these Pearson system of continuous probability 

distributions, the interested readers are referred to Johnson et al. (1994). In 

recent years, many researchers have considered a generalization of (2), known 

as generalized Pearson system of differential equation (GPE), given by 
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where m ,  N∈n { }0/  and the coefficients ja  and jb  are real parameters. 

The system of continuous univariate pdf s
′

   generated by GPE is called a 

generalized Pearson system which includes a vast majority of continuous 

pdf s
′

 by proper choices of these parameters. We have identified as many as 

14 such distributions, which are provided below: 

 

a) Roy (1971) studied GPE, when 0,3,2 0 === bnm , to derive five 

frequency curves whose parameters depend on the first seven population 

moments.  

 

b) Dunning and Hanson (1977) used GPE in his paper on generalized Pearson 

distributions and nonlinear programming. 

 

c) Cobb et al. (1983) extended Pearson's class of distributions to generate 

multimodal distributions by taking the polynomial in the numerator of GPE of 

degree higher than one and the denominator, say ( )xv , having one of the 
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following forms: 

 

(I)       ( ) ∞<<∞−= xxv ,1 , 

(II)       ( ) ∞<<= xxxv 0, , 

(III)       ( ) ∞<<= xxxv 0,2
, 

(IV)       ( ) ( ) 10,1 <<−= xxxxv . 

 

d) Chaudhry and Ahmad (1993) studied another class of generalized Pearson 

distributions when 

0,2
2
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e) Lefevre et al. (2002) studied characterization problems based on some 

generalized Pearson distributions. 

 

f) Considering the following class of GPE 
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Sankaran et al. (2003) proposed a new class of probability distributions and 

established some   

characterization results based on a relationship between the failure rate and the 

conditional moments.  

 

g) Stavroyiannis et al. (2007) studied generalized Pearson distributions in the 

context of the superstatistics with non-linear forces and various distributions.  

 

h) Rossani and Scarfone (2009) have studied GPE in the following form 
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 and used it to generate  generalized Pearson distributions in order to study 

charged particles interacting  

 with an electric and/or a magnetic field. 

 

3. Some Recently Developed Generalized Pearson System of Distributions 

In what follows, we provide a brief description of some new classes of 

distributions generated as the solutions of the generalized Pearson system of 

differential equation (GPE) (2). 
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Shakil et al (2010a) defined a new class of generalized Pearson distributions 

based on the following differential equation 
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which is a special case of the GPE (2) when 1,2 == nm , and 00 =b . The 

solution to the differential equation (3) is given by 
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where )(zDp denotes the parabolic cylinder function. The possible shapes of 

the pdf f (4) are provided for some selected values of the parameters in 

Figure 1. It is clear from Figure 1 that the distributions of the random variable 

X  are positively (that is, right) skewed and unimodal.    

 

(a)  
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(b)                 

 
Figure 1: PDF Plots of X  for (a) 1=α , 5.0=σ , 2,1,5.0,2.0=β  

(left), and (b) 1=α , 1=σ , 2,1,5.0,2.0=β  (right). 

 

 

Shakil and Kibria (2010) consider the GPE (2) in the following form 
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when ,0,1, 121 ====+== −paaapnpm L  and 

020 ==== pbbb L . The solution to the differential equation (6) is given 

by 
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and C  is the normalizing constant given by 
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where ( ).,.Β  denotes the beta function. By definition of beta function, the 

parameters in (8) should be chosen such that 
p

µ
ν > . The possible shapes of 

the pdf f (7) are provided for some selected values of the parameters in 

Figure 2 (a, b) below. From these graphs, it is evident that the distribution of the 

RV X  is right skewed.  

(a)                                               

                                                                  

(b) 
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Figure 2: PDF Plots of X  for (a) 

8,5,4,2,2,2,1,1 ===== pµνβα  (left); and (b) 

5,4,5.2,2,3,2,1,1 ===== µνβα p  (right). 

 

Shakil, Kibria and Singh (2010b) consider the GPE (2) in the following form 
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Where: ,0,1,2 121121 =======+== −+− ppp aaaaapnpm LL  

and 0210 ===== pbbbb L . The solution to the differential equation (9) 

is given by 
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and C  is the normalizing constant given by 
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where ( )βαν 2
p

K  denotes the modified Bessel function of third kind. 

The possible shapes of the pdf f (10) are provided for some selected 

values of the parameters in Figure 3 (a, b). It is clear from Figure 3 (a, b), 

the distributions of the random variable X  are positively (that is, right) 

skewed with longer and heavier right tails. 

(a)   

(b)            

                                                          

        
Figure 3: PDF Plots of X  for (a) 4,3,2,1,0,1,1 ==== pνβα  

(left), and (b) 2,1,0,1,1,5.0,1 −==== νβα p  (right). 
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4. Hamedani’s Generalized Pearson System of Distributions 

 

Hamedani (2011) has defined a new variation of SKS continuous probability 

distribution given in (10) in a bounded domain. The pdf  of this distribution is 

given by 
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where 0>α ,  0>β ,  and 0>p  are parameters and { }αβ2exp=C  

is the normalizing constant. The cdf  corresponding to the pdf  (12) is given 

by  
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For the special case of βα =  , we have  
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where 0>α  and 0>p  are parameters. It is easy to see that the pdf  f  

given by (12) satisfies the following differential equation 
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which is a special case of GPE (2). For characterizations of the pdf  (12) when 

N∈p { }0/ , the interested readers are referred to Hamedani (2011). For the 

special case of βα =  , the possible shapes of the pdf f  (14) are provided 

for some selected values of the parameters 2,1,5.0,2.0== βα for 

5,2,1=p , in the following Figure 4 (a, b, c). The effects of the parameters can 

easily be seen from these graphs. For example, it is clear from the plotted Figure 

4 (a, b, c) of the pdf  that the newly proposed probability density function is 

unimodal. Also, for some selected values of the parameters, the distributions of 

the random variable X  are both right and left skewed, whereas, for (i) 

2== βα , 1=p , (ii) 5.0== βα , 2=p , and (iii) 2.0== βα , 

5=p , the distributions appear to be symmetric. 
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(a)                             

 
(b) 

                               
(c) 

 
Figure 4: PDF for 2,1,5.0,2.0== βα , for 5,2,1=p , respectively. 
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5. Ahsanullah, Shakil and Kibria’s Generalized Pearson System of 

Distributions 

Ahsanullah, Shakil and Kibria (2013) defined a new class of distributions as 

solutions of the GPE (2). They considered the following differential equation 
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which is a special case of the generalized Pearson Eq. (2) when 2, 3m n= = . 

Putting b3 = 1, b4 =γ, a1 =β γ, a2 = β – γ + γ ν, a3 = ν + µ - 2, x > 0; in (3), we 

have 
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where we assume that β > 0, γ > 0, 0 < ν < 1, 0 < µ < 1, 1 - µ > ν > 0. 

 

Integrating the above equation, we have
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Using the equation (3.471.7), Page 340 of Gradshteyn and Ryzhik (1980), we 

easily obtain the following normalizing constant as  
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where W(.) denotes the Whittaker function which is defined as the solution of 

the following differential equation 
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(See, for details, Abramowitz Milton and Stegun, Irene A. eds. Handbook of 

Mathematical Functions, chapter 13, Dover publications, New York, 1970, page 

505). The possible shapes of the pdf  f(x) as given in (16) are provided for some 

selected values of the parameters in the following Figure 5 (a, b). It is clear from 

Figure 5 (a, b), that the newly proposed distribution is right skewed and the 

effects of the parameters can easily be seen from these graphs.  
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Figure 5(a): PDF for 0.1,0.3,0.5,0.7ν =  when 2, 1, 0.2β γ µ= = =  Figure 

5(b): PDF for 1,3,5,7β =  when 3, 0.3, 0.4γ µ ν= = =  
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6. Stavroyiannis’ Generalized Pearson System of Distributions 

Recently, Stavroyiannis (2014) defined a new class of distributions as solutions 

of the GPE (2). They considered the following differential equation 
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which is a special case of the generalized Pearson Eq. (2) when 6,5 == nm . 

By taking special values of the coefficients ja  and jb , Stavroyiannis (2014) 

obtained the GPE in the following form  
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with its solution given by the following probability density function: 
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where λ  is the location parameter, 0>a

 

is the scale parameter, 
2

1
>m

 

and 

0≥b

 

control the kurtosis, ν  is the asymmetry parameter, and C  is the 

normalization constant. As pointed by Stavroyiannis (2014), the above 

distribution with the pdf  (19) includes an extra fourth order term in the 

denominator to account for fat and thick-tails for the case of 0>b . The 

distribution becomes double peaked for the case of a negative b  coefficient, 

while for 0=b  the Pearson-IV distribution is regained. For details on these, 

the interested readers are referred to Stavroyiannis (2014). 

 

7. A New Class of Generalized Pearson Distribution arising from Michaelis-

Menten Function 

 

Recently,  Shakil and Singh (2015) have developed a new class of generalized 

Pearson distribution arising from Michaelis-Menten Function, which is 

described below. For details see Shakil and Singh (2015). 

 
For a positive continuous random variable X, we define a new class of 
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generalized Pearson distributions based on the following differential equation 
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which is a special case of the GPE (2) when 1,1 == nm , 
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known as Michaelis-Menten function. The solution to the differential equation 

(20) is easily obtained as follows 
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and C  denotes the normalizing constant. In order that the right side of the Eq. 

(21) represents a probability density function (pdf), we must have 
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(ii) Again, in Eq. (22), using the binomial series representation  
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Kummer’s (or degenerate hypergeometric) function of the second kind, see, for 

example, Abramowitz and Stegun (1970), Gradshteyn and Ryzhik (1980), and 

Oldham et al. (2009), among others. 

 

Using twice the binomial series representation ( )
( ) ( )

∑
∞

=

− −
=+

0 !
1

k

k

ks

k

ws
w , for 

any real value of s , and Eq. 3.381.1/P. 317 of Gradshteyn and Ryzhik (1980), 

the cumulative distribution function (cdf ) of our new distribution is easily 

obtained as follows  

 

 

( ) ( ) ( ) ( )

∑ ∑∫
∞

=

∞

=

−−−− ++







−

==
0 0

1

0
!!

,11

)()(
k j

jkj

k

jk

k

x

XX
jk

xjk

CdxxfxF

λγλα
γ

δ
γµθ θ

                              (25) 

where ( ) dtetzs
t

z

s −−

∫=
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1,γ  denotes the incomplete gamma  function, and C  

denote the normalizing constant given by the equation (23). The possible shapes 

of the pdf ( )xf in Eq. (21) and the cdf ( )xF  in Eq. (23) are provided for 

some selected values of the parameters in the following Figures 1-2. The effects 

of parameters can be easily seen from these graphs. Also, it is clear from these 

graphs that our proposed distributions of the random variable X  are positively 

(that is, right) skewed and unimodal. 
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Figure 1: PDF and Figure 2: CDF 

for 4,3,2,1=µ  when 5.0,5.0,1,1,1 ===== λθδγα . 

 

nth  Moment: It is given by 
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In Eq. (26), using the binomial series representation 
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easily obtained:   
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where C  denotes the  normalizing constant given by (24), 
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dtpte
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− +
Γ

=Ψ ∫  is known as Kummer’s 

(or degenerate hypergeometric) function of the second kind, and (.)Γ  denotes 

the gamma function defined by ( ) dtets
ts −

∞
−

∫=Γ
0

1
, see, for example, 

Abramowitz and Stegun (1970), Gradshteyn and  

Ryzhik (1980), and Oldham et al. (2009), among others. Taking 

,,3,2,1 K=n  in Eq. (27), we can easily obtain the moments of different 

orders, including the variance, 
2σ , of our proposed distribution which can be 

obtained by using the formula: ( ) ( )( )222 XEXE −=σ . 

 

Distributional Relationships: It is easy to see that, by a simple transformation 

of the variable x  or by taking special values of the parameters 

{ }0,,;0,, ≥> λθµδγα , a number distributions are special cases of 

Shakil and Singh (2015) distribution as stated below. 

 

(i) Pearson III Distribution (when 0=θ ).  

 

(ii) Pearson VIII Distribution (when 0,0 == λµ ). 

 

(iii) Pearson IX Distribution (when 0,0 == θλ ). 
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(iv) Pearson X Distribution (when 0,0 == θµ ).  

 

(v) A Special Case of Our Proposed Distribution (when 0=µ ): When 

0=µ  in (21), we have 

 

  
0;0,;0,,,)()( >≥>+= −− xexCxf x

X λθδγαδγ λθ
,                                                  

 

where C  denotes the  normalizing constant given by 
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which is easily obtained by using Equation 2.3.6.9 of Prudnikov et al., Vol. 1 

[19], where ( )
( )

dtpte
p

zqp
pqptz 11

0

)1(
1

;, −−−
∞

− +
Γ

=Ψ ∫  is known as 

Kummer’s (or degenerate hypergeometric) function of the second kind, see, for 

example, Abramowitz and Stegun (1970), Gradshteyn and Ryzhik (1980), and 

Oldham et al. (2009), among others. 

 

(vi) Distribution of the Product of the PDF’s of the Exponential and Some 

Members of the Family of Burr Distributions (Lomax, or Pareto Type I, or 

Pareto Type II): It is easy to see that, by a simple transformation of the variable 

x  or by taking special values of the parameters { }0,;0,, ≥> λθδγα , 

the pdf of the above special case (v) can be expressed as the pdf of the product 

of the pdf’s of the exponential and some members of the family of Burr 

distributions (such as Lomax, or Pareto Type I, or Pareto Type II distributions).  

  

8. Concluding Remarks and Directions for Future Research 

 

In this paper, we have reviewed some new classes of continuous probability 

distribution which can be generated from the generalized Pearson system of 

differential equation. We have identified as many as fifteen such distributions. It 

is hoped that the proposed attempt will be helpful in designing a new approach 

of unifying different families of distributions based on the generalized Pearson 

differential equation. The other open problems for future research are following: 

 

i) The estimation of the parameters is very important and necessary for 

applications of these distributions.  

ii) Inferences about the parameters may also be of interest to the 

researchers.  
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iii) Characterizations of these distributions. 

iv) Can we unify all distributions (known & unknown) through GPD? 

v) Can we prove Existence & Uniqueness Theorem of Solutions for 

GPDE? 

vi) Can we establish a Fixed Point Theorem for GPDE? 

 

† M. Shakil, Ph.D,. Miami Dade College, Hialeah, FL, USA 

‡ B.M. Golam Kibria, Ph.D,. Florida International University, Miami, FL, USA 

§ J. N. Singh, Ph.D., Barry University, Miami Shores, FL, USA,  

 

References 

 

Abramowitz, M., and Stegun, I. A. (1970). Handbook of Mathematical 

Functions, with Formulas, Graphs, and Mathematical Tables. Dover, New 

York. 

 

Ahsanullah, M., Shakil, M., and Kibria, B. M. G. (2013). On a probability 

distribution with fractional moments arising from generalized Pearson system of 

differential equation and its characterization. International  Journal of Advanced 

Statistics and Probability, 1 (3), 132-141. 

 

Chaudhry, M. A., and Ahmad, M. (1993). On a probability function useful in 

size modeling. Canadian Journal  of Forest Research, 23(8), 1679–1683. 

 

Cobb, L., Koppstein, P., and Chen, N. H. (1983). Estimation and moment 

recursion relations for multimodal distributions of the exponential family. 

Journal of the American Statistical Association, 78(381), 124-130. 

 

Dunning, K., and Hanson, J. N. (1977). Generalized Pearson distributions and 

nonlinear programming. Journal of Statistical Computation and Simulation, 

Volume 6, Issue 2, 115 – 128. 

 

Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series, and 

Products (6th edition). Academic Press, San Diego. 

 

Hamedani, G. G. (2011). Characterizations of the Shakil-Kibria-Singh 

Distribution. Austrian Journal of  Statistics, 40 (3), 201–207. 

 

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate 

Distributions, (volume 1, second edition). John Wiley & Sons, New York. 

 

Lefevre, C., Papathanasiou, V., and Utev, S. (2002). Generalized Pearson 

distributions and related characterization problems. Annals of the Institute of 

Statistical Mathematics, 54, 731-742. 

 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 11 No. 2     32 

Oldham, K. B., Myland, J., and Spanier, J. (2009). An Atlas of Functions with 

Equator, the Atlas Function Calculator. Springer, New York, USA. 

 

Pearson, K. (1895). Contributions to the mathematical theory of evolution, II: 

Skew variation in homogeneous material. Philosophical Transactions of the 

Royal Society of London, A186, 343-414. 

 

Pearson, K. (1901). Mathematical contributions to the theory of evolution, X: 

Supplement to a memoir on skew of variation. Philosophical Transactions of the 

Royal Society of London. Series A, Containing Papers of a Mathematical or 

Physical Character, 197, 343-414. 

 

Pearson, K. (1916). Mathematical contributions to the theory of evolution, XIX: 

Second supplement to a memoir on skew of variation. Philosophical  

Transactions of the Royal Society of London. Series A, Containing Papers of a 

Mathematical or Physical Character, 216, 429-457. 

 

Prudnikov, A. P., Brychkov, Y. A., and Marichev, O. I. (1986). Integrals and 

Series, Volume 1. Gordon and Breach Science Publishers. Amsterdam. 

 

Rossani, A., and Scarfone, A. M. (2009). Generalized Pearson distributions for 

charged particles interacting with an electric and/or a magnetic field. Physica, A, 

388, 2354-2366. 

 

Roy, L. K. (1971). An extension of the Pearson system of frequency curves. 

Trabajos de estadistica y de investigacion operativa, 22 (1-2), 113-123. 

 

Sankaran, P.G. (2003). A generalized Pearson system useful in reliability 

analysis. Statistical papers, 44, 125-130. 

 

Shakil, M., and Kibria, B. M. G. (2010). On a family of life distributions based 

on generalized Pearson differential equation with applications in health 

statistics. Journal of Statistical Theory and Applications, 9 (2), 255-282. 

 

Shakil, M., Singh,
 
J. N., and Kibria,

 
B. M. G. (2010a). On a family of product 

distributions based on the Whittaker functions and generalized Pearson 

differential equation. Pakistan Journal of Statistics, 26(1), 11-125. 

 

Shakil, M., Kibria,
 
B. M. G., and Singh,

 
J. N. (2010b). A new family of 

distributions based on the generalized Pearson differential equation with some 

applications. Austrian Journal of Statistics, 39 (3), 259–278. 

 

Shakil, M., and Singh, J. N. (2015). A note on a new class of generalized 

Pearson distribution arising from Michaelis-Menten function of enzyme 

kinetics. International Journal of Advanced Statistics and Probability, 3(1), 25-

34. 



 

Journal of Mathematical Sciences & Mathematics Education Vol. 11 No. 2     33 

 

Stavroyiannis, S. (2014). On the generalised Pearson distribution for application 

in financial time series modelling. Global Business and Economics Review, 

16(1), 1-14. 

 
Stavroyiannis, S., and Stavroulakis, D. (2007). On the superstatistics with non-

linear forces and various distributions. Review of Economic Sciences, 12, 21-34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


