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A Minkowski-like Inequality over ℝ 

Karen S. Adams, Ed.D.† 

Abstract 

The discrete case of the Minkowski inequality for p =2 is a well-known triangle 
inequality over the set of complex.  This paper presents a new Minkowski-like 
inequality over the set of reals. 

Introduction 

The triangle inequality states that given any triangle with sides of length, a, b, 
and c, then ܿ < ܽ + ܾ. Equivalently, for complex numbers ݖଵ and ݖଶ we 
write |ݖଵ + |ଶݖ ≤ |ଵݖ| +  represents the norm of the vector.  If we |ݖ| ଶ|, whereݖ|
define 

|ܽ| = ൭|ܽ|ଶ



ୀଵ

൱

ଵ
ଶ

 

to be the norm of vector ܽ = (ܽଵ, ܽଶ, ⋯ , ܽ) ∈ ℂ where ℂ is the usual n 
dimension vector space over the reals, we have a triangle inequality in ℂ.  The 
discrete case of Minkowski’s Inequality for p = 2 is such a triangle inequality.  
Here is a popular proof. 

Theorem. Let ܽଵ, ܽଶ, ⋯ , ܽ  and ܾଵ, ܾଶ, ⋯ , ܾ be complex numbers, then  

ቌห ܽ + ܾห
ଶ
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. 

Proof [1, p.25].  Let  

ܣ = ห ܽห
ଶ

,   



ୀଵ

ܤ  = ห ܾห
ଶ

, and ܥ =  ܽ ఫܾ
ഥ.
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If B = 0, then ܾ = 0 ∀ ݇ and the conclusion is trivial.  If ܤ > 0, then  

ห ܽ + ܾห
ଶ
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 ܾ ఫܽഥ +  ܾ ఫܾ
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= ܣ + ܥ + ̅ܥ +  ܤ

= ܣ + (ܥ)2ܴ݁ +  ܤ

≤ ܣ + |ܥ|2 +  ܤ

≤ ܣ + ܤ√ܣ√2 +  ܤ

= ൫√ܣ + ൯ܤ√
ଶ

. 

The second inequality is Cauchy’s inequality (or CBS-Inequality).  
 

A Minkowski-like Inequality over ℝ 

If we define  

|ܽ| = ൭ ܽ




ୀଵ

൱

ଵ


,  = 2, 3, … , ݍ ∈ ℕ,  >  ݍ

for vector ܽ = (ܽଵ, ܽଶ, ⋯ , ܽ) ∈ ℝ, ܽ ≥ 0, then we have a Minkowski-like 
inequality over ℝ. 

Theorem. Let ܽଵ, ܽଶ, ⋯ , ܽ  and ܾଵ, ܾଶ, ⋯ , ܾ be real values where ܽ, ܾ ≥
0 ∀ ݇, then for p = 2, 3, … , ݍ ∈ ℕ ,  >   ,ݍ

ቌ൫ ܽ + ܾ൯




ୀଵ

ቍ

ଵ


≤ ቌ ܽ




ୀଵ

ቍ

ଵ


+ ቌ ܾ




ୀଵ

ቍ

ଵ


. 

Proof. 
If ܽ + ܾ = 0  ∀ ݇, then the conclusion is trivial. Using induction set p = 2 and 
we have, 

ቌ൫ ܽ + ܾ൯
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. 

This is a case of the Minkowski’s Inequality over the set of reals. Now, assume 
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 for  > 2 then 
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Hence the inequality, 

ቌ൫ ܽ + ܾ൯
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is true for   = 2, 3, … , ݍ ∈ ℕ,  >  .ݍ
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