A converse of the mean value theorem for differentiable functions of one or more variables

Diane Denny, Ph.D. †

Abstract

Let $f: \Omega \to R$ be a continuously differentiable function of \hat{x} in Ω , where $\Omega \subset \mathbb{R}^N$ is an open, convex set and $N \ge 1$. Let $\mathcal{E} \in \Omega$ be a given point. We prove that if there exists a vector \hat{k} such that $\nabla f(\mathcal{E}) \bullet \hat{k}$ is not a local extremum value of $\nabla f(\hat{x}(t)) \bullet \hat{k}$ for points $\hat{x}(t) = \mathcal{E} + t\hat{k}$ on the line through the point \mathcal{E} for $t \in I$, where I is an interval such that $\hat{x}(t) \in \Omega$ if $t \in I$, and if 0 is not an accumulation point of the set $S = \{t \in I \mid \nabla f(\hat{x}(t)) \bullet \hat{k} = \nabla f(\mathcal{E}) \bullet \hat{k}\}$, then there exist points \check{a} , \check{b} in Ω such that $f(\check{b}) - f(\check{a}) = \nabla f(\mathcal{E}) \bullet (\check{b} - \hat{a})$.

Introduction

One version of the mean value theorem states that if $f: \Omega \to R$ is a continuously differentiable function of $\stackrel{\circ}{X}$ on an open, convex set $\Omega \subset R^N$ and $\stackrel{\circ}{a}, \stackrel{\circ}{b}$ in Ω are given points, then there exists a point $\stackrel{\circ}{\mathcal{E}} \in \Omega$ such that $f(\stackrel{\circ}{b}) - f(\stackrel{\circ}{a}) = \nabla f(\stackrel{\circ}{\mathcal{E}}) \bullet (\stackrel{\circ}{b} - \stackrel{\circ}{a})$ (see, e.g., [2]). The question to be considered here is: If $f: \Omega \to R$ is a continuously differentiable function of $\stackrel{\circ}{X}$ on an open, convex set $\Omega \subset R^N$ and $\stackrel{\circ}{\mathcal{E}} \in \Omega$ is a given point, then do there exist points $\stackrel{\circ}{a}, \stackrel{\circ}{b}$ in Ω such that $f(\stackrel{\circ}{b}) - f(\stackrel{\circ}{a}) = \nabla f(\stackrel{\circ}{\mathcal{E}}) \bullet (\stackrel{\circ}{b} - \stackrel{\circ}{a})$? In this paper, we prove that if there exists a vector $\stackrel{\circ}{k}$ such that $\nabla f(\stackrel{\circ}{\mathcal{E}}) \bullet \stackrel{\circ}{k}$ is not a local extremum value of $\nabla f(\stackrel{\circ}{x}(t)) \bullet \stackrel{\circ}{k}$ for points $\stackrel{\circ}{x}(t) = \stackrel{\circ}{\mathcal{E}} + t\stackrel{\circ}{k}$ on the line through the point $\stackrel{\circ}{\mathcal{E}}$ for $t \in I$, where I is an interval such that $\stackrel{\circ}{x}(t) \in \Omega$ if $t \in I$, and if 0 is not an accumulation point of the set $S = \{t \in I \mid \nabla f(\stackrel{\circ}{x}(t)) \bullet \stackrel{\circ}{k} = \nabla f(\stackrel{\circ}{\mathcal{E}}) \bullet \stackrel{\circ}{k}\}$, then there exist points $\stackrel{\circ}{a}, \stackrel{\circ}{b}$ in Ω such that $f(\stackrel{\circ}{b}) - f(\stackrel{\circ}{a}) = \nabla f(\stackrel{\circ}{\mathcal{E}}) \bullet (\stackrel{\circ}{b} - \stackrel{\circ}{a})$.

Several authors have studied the converse of the mean value theorem for functions of one variable (see, e.g., Almeida [1], Mortici [3], Tong and Braza [4]). For example, Almeida [1] proved that if f is a continuous function on an interval $[a,b] \subset R$ and differentiable on the interval (a,b), then there exists an interval $(\alpha,\beta) \subset (a,b)$ with $c \in [\alpha,\beta]$ such that $f(\beta) - f(\alpha) = f'(c)(\beta - \alpha)$, if there exists $k_0 > 0$ such that $(c - k_0, c + k_0) \subset (a,b)$ and $f'(c - k) \leq f'(c) \leq f'(c + k)$ for all $k \in (0, k_0)$.

We have not seen any work by other researchers related to the converse of the mean value theorem for functions of several variables.

The paper is organized as follows: The main result, Theorem 1, is presented and proven in the next section. A lemma supporting the proof of Theorem 1 appears in the Appendix at the end of this paper.

CS

A converse of the mean value theorem

The purpose of this paper is to prove the following theorem:

Theorem 1: Let $f : \Omega \to R$ be a continuously differentiable function of $\overset{\vee}{x} \in \Omega$, where $\Omega \subset R^N$ is an open, convex set and $N \ge 1$. Let $\overset{\vee}{c} \in \Omega$ be a given point. If there exists a vector \overrightarrow{k} such that $\nabla f(\overrightarrow{c}) \bullet \overrightarrow{k}$ is not a local extremum value of $\nabla f(\overrightarrow{x}(t)) \bullet \overrightarrow{k}$ for points $\overset{\vee}{x}(t) = \overrightarrow{c} + t\overrightarrow{k}$ on the line through the point \overleftrightarrow{c} for $t \in I$, where I is an interval such that $\overset{\vee}{x}(t) \in \Omega$ if $t \in I$, and if 0 is not an accumulation point of the set $S = \{t \in I \mid \nabla f(\overrightarrow{x}(t)) \bullet \overrightarrow{k} = \nabla f(\overrightarrow{c}) \bullet \overrightarrow{k}\}$, then there exist points \overleftrightarrow{a} , \overleftrightarrow{b} in Ω such that $f(\overrightarrow{b}) - f(\overrightarrow{a}) = \nabla f(\overrightarrow{c}) \bullet (\overrightarrow{b} - \overrightarrow{a})$.

Proof:

Suppose that there exists a vector \vec{k} such that $\nabla f(\vec{c}) \bullet \vec{k}$ is not a local extremum value of $\nabla f(\vec{x}(t)) \bullet \vec{k}$ for points $\vec{x}(t) = \vec{c} + t\vec{k}$ on the line through the point \vec{c} for $t \in I$, where I is an interval such that $\vec{x}(t) \in \Omega$ if $t \in I$, and suppose that 0 is not an accumulation point of the set $S = \{t \in I \mid \nabla f(\vec{x}(t)) \bullet \vec{k} = \nabla f(\vec{c}) \bullet \vec{k}\}$.

Let $h(t) = \nabla f (t + tk) \bullet k$. Then h(0) is not a local extremum value of h(t) for $t \in I$, and 0 is not an accumulation point of the set $S = \{t \in I \mid h(t) = h(0)\}$. It follows from Lemma 1 (which appears in the Appendix) that there exist numbers $t_1, t_2 \in I$ such that $t_1 < 0 < t_2$ and

$$h(0) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} h(\tau) d\tau$$

Therefore, we obtain the following result:

$$h(0) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} h(\tau) d\tau$$

$$= \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \nabla f(\hat{c} + \tau \hat{k}) \bullet \hat{k} d\tau$$

$$= \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \nabla f(\hat{c}(\tau)) \bullet \hat{x}'(\tau) d\tau$$

$$= \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{df(\hat{x}(\tau))}{d\tau} d\tau$$

$$= \frac{1}{t_2 - t_1} (f(\hat{x}(t_2)) - f(\hat{x}(t_1)))$$

$$= \frac{1}{t_2 - t_1} (f(\hat{b}) - f(\hat{a}))$$

where we define $\overset{\mathcal{P}}{d} = \overset{\mathcal{P}}{x}(t_1) = \overset{\mathcal{P}}{c} + t_1 \overset{\mathcal{P}}{k}$ and we define $\overset{\mathcal{P}}{b} = \overset{\mathcal{P}}{x}(t_2) = \overset{\mathcal{P}}{c} + t_2 \overset{\mathcal{P}}{k}$. Note that $\overset{\mathcal{P}}{x}(t_1) \in \Omega$ and $\overset{\mathcal{P}}{x}(t_2) \in \Omega$ because $t_1 \in I$ and $t_2 \in I$ and because $\overset{\mathcal{P}}{x}(t)$ in Ω for $t \in I$.

Since
$$\overrightarrow{b} - \overrightarrow{a} = (t_2 - t_1)\overrightarrow{k}$$
, it follows that
 $h(0) = \nabla f(\overrightarrow{c}) \cdot \overrightarrow{k} = \frac{1}{t_2 - t_1} \nabla f(\overrightarrow{c}) \cdot (\overrightarrow{b} - \overrightarrow{a})$

And since $h(0) = \frac{1}{t_2 - t_1} (f(\overset{\rho}{b}) - f(\overset{\rho}{a}))$, it follows that $f(\overset{\rho}{b}) - f(\overset{\rho}{a}) = \nabla f(\overset{\rho}{c}) \bullet (\overset{\rho}{b} - \overset{\rho}{a})$.

This completes the proof of the theorem.

† Diane Denny, Ph.D., Texas A&M University-Corpus Christi, USA

Journal Of

References

[1] R. Almeida, "An elementary proof of a converse mean value theorem", Internat. J. Math.Ed. Sci. Tech., **39** (2008), no. 8, 1110--1111.

[2] T. Apostol, Mathematical Analysis, Addison-Wesley: Reading, 1974.

[3] C. Mortici, "A converse of the mean value theorem made easy", Internat. J. Math. Ed. Sci. Tech., 42 (2011), no. 1, 89--91.

[4] J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly, **104** (1997), no. 10, 939—942.

Appendix

Lemma 1: Let $h: I \to R$ be a continuous function where $I \subset R$ is an open interval, and let $t_0 \in I$ be a given number. If $h(t_0)$ is not a local extremum value of h(t) in I, and t_0 is not an accumulation point of the set $S = \{t \in I \mid h(t) = h(t_0)\}$, then there exist numbers $t_1, t_2 \in I$ such that $t_1 < t_0 < t_2$ and $h(t_0) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} h(\tau) d\tau$.

Proof:

Suppose that $h(t_0)$ is not a local extremum value of h(t) in I, and t_0 is not an accumulation point of the set $S = \{t \in I \mid h(t) = h(t_0)\}$. Since t_0 is not an accumulation point of the set $S = \{t \in I \mid h(t) = h(t_0)\}$, it follows that there exists a neighborhood $N \subset I$ of t_0 such that $h(t) \neq h(t_0)$ for all

 $t \in N \setminus \{t_0\}$. Since h is continuous and $h(t_0)$ is not a local extremum value of h, it follows that either $h(t) > h(t_0)$ for $t > t_0$ and $h(t) < h(t_0)$ for $t < t_0$, or $h(t) < h(t_0)$ for $t > t_0$ and $h(t) > h(t_0)$ for $t < t_0$, where $t \in N$.

First, suppose that $h(t) > h(t_0)$ for $t > t_0$ and $h(t) < h(t_0)$ for $t < t_0$, where $t \in N$. Let $G(t) = \int_{t_0}^t h(\tau) - h(t_0) d\tau$. It follows that there exist numbers a_1 , b_1 in N such that $a_1 < t_0 < b_1$ and $G(a_1) > 0$, $G(b_1) > 0$. Note that $G(t_0) = 0$. Therefore, by the continuity of G(t) and the Intermediate Value Theorem, it follows that there exist numbers t_1 , t_2 in N such that $G(t_1) = G(t_2)$ and $a_1 \le t_1 < t_0 < t_2 \le b_1$. Then $\int_{t_0}^{t_1} h(\tau) - h(t_0) d\tau = \int_{t_0}^{t_2} h(\tau) - h(t_0) d\tau$, and it immediately follows that $h(t_0) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} h(\tau) d\tau$.

Next suppose that $h(t) < h(t_0)$ for $t > t_0$ and $h(t) > h(t_0)$ for $t < t_0$, where $t \in N$. Since $G(t) = \int_{t_0}^t h(\tau) - h(t_0) d\tau$, it follows that there exist numbers c_1 , d_1 in N such that $c_1 < t_0 < d_1$ and $G(c_1) < 0$, $G(d_1) < 0$. Note that $G(t_0) = 0$. Therefore, by the continuity of G(t) and the Intermediate Value Theorem, it follows that there exist numbers t_1 , t_2 in N such that $c_1 \le t_1 < t_0 < t_2 \le d_1$ and $G(t_1) = G(t_2)$. It immediately follows that $h(t_0) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} h(\tau) d\tau$.

This completes the proof of the lemma.