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Abstract

In this paper, the Frechet differentiation of functions on Banach space
was reviewed. We also investigated it’s algebraic properties and its relation by
applying the concept to the inverse function theorem of the ordinary differential
equations. To achieve the feat, some important results were considered which
finally concluded that the Frechet derivative can extensively be useful in the
study of ordinary differential equations.
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Introduction
The Frechet derivative, a result in mathematical analysis is derivative
usually defined on Banach spaces. It is often used to formalize the functional
derivatives commonly used in physics, particularly quantum field theory. The
purpose of this work is to review some results obtained on the theory of the
derivatives and apply it to the inverse function theorem in ordinary differential
equations.

1.0 Derivatives

Definition 1.1 [Kaplon (1958)]:
Let f be an operator mapping a Banach space X into a Banach space Y. If there
exists a bounded linear operator T from X into Y such that:

”f (xu‘l' &x)_ f(xo)_ T[ﬁlel

lim
a0 | Axl
=0 (1.1)

Or,

f(x+ th) — f ()l
lim f( )~ F () = T.(h)
£ =0 £l
Or

NF(x+v)— Flx)— T (vl
x4 = FE =TI )
¥ =0 Il
then P is said to be Frechet differentiable at xo, and the bounded linear operator
P {ID] =T (1.2)
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is called the first Frechet — derivative of f at xo. The limit in (1.1) is supposed to

hold independent of the way that Ax approaches 0. Moreover, the Frechet
differential

5F (o) Ax) = f/(xo) Ax
is an arbitrary close approximation to the difference f (x5 + Ax) — f (x,)

relative to ||Ax||, for || Ax|| small.
If f; and f; are differentiable at X, then

(it £2)'(x) = filxe) + £7(xp)
Moreover, if f is an operator from a Banach space X into a Banach space X into
a Banach space Z, and f; is an operator from Z into a Banach space Y, their

composition f; @ f; is defined by
(fi e h)x)= f]_(fg(x)); forallx € X

We know that f; o f; is differentiable at xo if > is differentiable at xo and fj is
differentiable at > (Xo) of Z, with (chain rule):

(fl e fz)’(x) = ff (f:(xo))fzf ()

In order to differentiate an operator f we write:
o+ Ax) = f(xp) = T(xoAx)Ax + n(x0,A%),
where T' (x,, Ax) is a bounded linear operator for given x4, Ax with

lim T(x,Ax)=T (1.3)
laxl-o0
and
Il (xp, Ax) |l
lim 7 (%o, A2) = (1.4)
llax(l—o0 | Ax||

Estimate (1.3) and (1.4) give
: , — £
lanho T o AX) = 1
If T (x4, Ax) is a continuous function of Ax in some ballU (0, R), (R = 0),
then
T (x0,0) = f'(xp)
We now present the definition of a mosaic:
Higher — order derivatives can be defined by induction:
Definition 1.2 [Argyros (2005)]
If fis (m — 1) — times Frechet — differentiable (m = 2 an integer), and an m —
linear operator A from X into Y exists such that

£ (o + Ax) = F 7V (xo) — A(AD)||

lim
llaxll=o llAx]|
=0 {1.5]
then A is called the m — Frechet — derivative of f at xo, and
A= " (x,) (1.6)

Definition 1.3 [Koplan (1958)]
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Suppose f: I & R™ — R™ where U is an open set, the function f is

classically differentiable at x; & U if
The partial derivatives of

f. % fori=1..mandj= 1..nexists at x,,
i
The Jacobean matrix J (x,) = [% (x,) € R™ x”’] satisfies
j
CF )= Flrg) = J )= xl
lim =0
x g lx — x,ll

We say that the Jacobean matrix J((x,) is the derivative of f at x, that is
called total derivative

Higher partial derivatives in product spaces can be defined as follows:
Define

X = T(X}-,XI-) (1.7)

where X, Xy, ... are Banach spaces and T'(X;, X ;) is the space of bounded
linear operators from X into X;. The elements of X ; are denoted by T, etc.
Similarly,

X = T(Xm,X[-j] = T[:X)-k, X wjm—1), (1.8)
which denotes the space of bonded linear operators from X f- into

Xij1jz --Jm = L Theelements A = A
m — linear operators.

Considir an operator f; from space

x = Hxﬂ, (1.9)

into X;, and that f; has partial derivative of orders 1,2, ..., 7 — 1 in some ball
U (xy, R), where R = Oand

_ (.o} (o) (0)
Xg = (x}.i 1 Xy s Xy )E X
For simplicity and without loss of generality we [Frechet (1906)] remember the
original spaces so that

J1 = Lja= 2,00, = 1

hence, we write

X, = (xiu},xgu},...,x::f})

A partial derivative of arder (m — 1) of f; at x, is an operator
A

ijm ijlj2

ij1j2 - JMare a generalization of

iqlq:...qm—?.
" £ (x)

dx,q x5 .. Ox

(1.10)

gm—1
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{in XquqE...qm—i] where
1 =919y =1
Let P(X,,,) denote the operator from X, into X;q o5 om—y oObtained by

letting

_ Lo .
I_il'_x_j » jiqm

for some q,,,, 1 = g,,, = 1. Moreover, if

0 d am_lfi Lo
p ( ( }) (%)

Xam .
0X gy 0%g10% 5 . OX g
o f (x u)
(1.11)
83: w0x =

exists it will be called the partlal Frechet — derivative of order m of ffwith

IeSPeCt t0 X gy 5 wve » X gy At X

Furthermore, if )"[ is Frechet — differentiable m times at X, then

i (xo) . ¢
gl *gm
X gy - OX gy
a™ f; (%)
= xsl Ism (112)
0% 50X g5 o OX g
For any permutation §, S5, ..., §,,, of integers q4,4 3, ..., 4 ,,, and any choice
of POINt X gy vue s X gy, from Xy, .o, X respectively. Hence, if

F= (flr---:ﬁ-j 1san0peratorfromX =X,+ X,+ ..+ X, into
Y =¥+ ¥+ ..+ ¥ then

fom (xp)
(2
- (axﬂ ijm) (113)

.k':.l'u
= L2, ..t)1Jas eesdm = 1,2,... miscalled the m - Frechet
derivative of F at x 5 =

(o) (0 (0)
1 Xy s Xy
1.1 Integration

In this subsection we [Pantryagin (1962)] state results concerning the mean
value theorem. Taylor’s theorem, and Riemannian integration without the

proofs. The mean value theorem for differentiable real functions f:

F(b) - F(@) = £(c) (b~ a),

Where ¢ € (@, b), does not hold in a Banach space setting. However, if F is a
differentiable operator between two Banach spaces X and ¥, then

If(x)— FMIl = sup [If' @I llx—yll

Telixy)
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where

T(x,y) = {z:z= Ay+ (1 — A)x,0 < A <1}
Set

z(4) = ¥ T (1— A)x,0 < A <1,

Divide the interval 0 == A = 1 into n subintervals of lengths

AA;,i=1,2,..,n, choose points 4; inside corresponding subintervals and
as in the real Riemann integral consider sums

D FGIM=) FRIm,

where @ is the partition of the interval, and set
la] = max AA,
(&)

Deﬁnition 1.4 [ince (1956)]

S = llm Zf(fl VAA,
exists, then it is called the Riemann integral from f{A) on [0,1], denoted by

S = Llf(i)di = ij(,l)d,l

Definition 1.5 [Dunford and Schwartz (1958)]
A bounded operator P (A) on [0,1] such that the set of points of discontinuity

is of measure zero is said to be integrable on [0,1].
Theorem 1.1 [Day (1973)]

If F is m — times Frechet — differentiable in U (x4, R), R > 0, and
£ (x)is integrable from x to any € U (xy, R) then

FO) = F)+ Z — P @ -2"

+ Rm(x ), (1.14)

F6) - Z —F @ -0 }
ly —xII™

< _sw [F@1— (1.15)

XE

where
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R, (x,y) = f ™ (ay
+(1— Ax) (v
RO ol (1.16)
) (m — 1)! '

2.0 Theorem and Properties

Definition 2.1 [Arthanasius (1973)]

Assume that X, ¥ are Banach spaces, 5 is an open subset of

X and f:§ — Y, is continuous and Frechet differentiable at every point of 5,
Moreover assume that for every € = 0 there exists §(€) = 0 such that
Ifx,,%,, € S with [lx; — x,|| < (C €) then

W[ (x)— f(x)]hll=€eh ¥ [Ihll € X

lloc (x, L) |l < o< [h] forevery x € S, h € X with h < b (€)then
f is called C —differentiable on §

Theorem 2.1 [Arthanasius (1973)]

Let f be a convex function defined on an open convex subset X of a Banach
space X that is continuous at x € X. then f is frechet differentiable at x if f

If Gt th) + £ (x—th) = 2 f()ll _

lim

£=0 £l
uniformly for h €5,
Remark 2.1

Obviously, we have earlier seen that Frechet differentiability has additive
property and the product of two Frechet differentiable functions is Frechet
differentiable function (the function that is Frechet differentiable is continuous
and therefore locally bounded). Now we use boundedness of Frechet derivative
and triangle inequality. A function which is Frechet differentiable at a point is
continuous their.

3 THE INVERSE FUNCTION THEOREM

The inverse function theorem is an important tool in the theory of differential

equations It ensures the existences of solution of the equation Tx = vy .

Although T is not assumed to be compact and the contraction principle might
not be directly applicable, it is shown, in the proof of the inverse function

theorem, that the contraction principle can be used indirectly if T has some
appropriate differentiability properties.
Definition 3.1 [Arthanasius (1973)]

Let S be an open subset of the Banach space X and let f map 5 into the
Banach space Y. Fixapointxy, € 5 and let f(x,) = x4 then, fis
said to be “locally invertible at {x o }i’u] if there exist two numbers
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o= 0, § = 0, with the following property: for every y € 5, 5, (1) there
exists a unique ¥ € 5,(x,) such that f (x) = y.

Lemma 3.1 (uniqueness property of Frechet derivative) [Kaplan (1958)]

Let L § — ¥ be given with S an open subset of the Banach space X and ¥
another Banach space. Suppose further that f is Frechet differentiable at x € 5.
Then the Frechet derivative of f at x is unique.

Proof. Suppose that Dy (x), D, (x)are Frechet derivatives of f at x with
remainders @, (x,,h), @, (x, h)respectively. Then we have

D, (x)h+ w, (x,h) = D,(x)h + w,(x,h)

forevery h € X with x + h € 5,. Here S, are some open subsets of S
containing x. It follows that

Dy (x)h— D, (x)h [I/|[Rll
= [lw,(x, k) —w, (x,h)|| (3.1)
1/< llwy(x,h) IRl + e, (x, R) /1R
The last member of (3.1) tends to zero as ||| = O.
Let

T.= [D, (x) — D,(x)]x, x EX
then T is a linear operator on X such that

lim |ITx|l /llx]| =0
lxll- 0

Consequently given € = 0, there exists § (€) = 0 such that
ITx|l/llx|l = € forevery
x € X with ||x|| < 8(€).Giveny € Xwithy #0,let x =
s(e)y /2 llyll

Tl

.Then ||| < 8(€) and—— < eor ||Tyll < ellyll.Since €is

[l

arbitrary, we obtain Ty = 0 for every v € X. we conclude that

D, (x)= D,(x).

The existence of a bounded Frechet derivative f 1t is equivalent to the

continuity of f @t x. this is the content of the next lemma.

Lemma 3.2 [Argyros (2005)]

Let f:§ — Y be given where S is an open subset of a Banach space

X and ¥ another Banach space Let f be Frechet differentiable at x € §.

Then f is continuous at x if fr {x] is a bounded linear operator .

Proof. Let f be continuous at X € 5. Then for each € = 0 there exists

§ (&) € (0,1)such that

If(x+h)— f()ll< €/2,f(x+h)— f(x)hll < (e/2)Rll
< e/2

forallh € Bwithx+ h € S and ||k|| < &(€).
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Therefore.

If Cohll < (e/2)lRll+ Il flx+h)— fFx)ll< e

For ||h|| < & (€).x + h € 5, it follows that the linear operator ' (x) is
continuous at the point 0.

We should note here that the magnitude of the ball 5 plays no role in the
Frechet differentiability of f. This means that, to define the frechet derivative
f'(x)ef at x, we only need to have that certain differentiability conditions
hold for all x + h in a sufficiently small open neighborhood

S of the point x .
We now quote a well known theorem of functional analysis the “bounded
inverse theorem”

Theorem 3.2 [Day (1973)]

Let X, Y be Banach spaces and let T: X — ¥ be bounded linear, one to -one
and onto. Then the inverse

T~! of T is abounded linear operator onY.

We are ready for the inverse function theorem.
Theorem 3.3 (inverse function theorem). [Arthanasius (1973)]

Let X, ¥ be Banach spaces and 5 an open subset of X Let f:5 — ¥ be C-
differentiable on 5. Moreover, assume that the Frechet derivative of the function
is one to one and onto at some point X, € 5. then the function f is locally
invertible at the point (xo, f(x 0)).
Proof . Let D = f'(x,). Then the operator D™ exists and is defined on
Y. Moreover D™ is bounded. Thus the equation f(x) = ¥ is equivalent
to the equation D™ f(x) = D™'y. fix y € Y and define the operator
U on 5 as follows.
U, =x+D7 x—f(x)].x

ES (3.2)

obviously, the fixed points of the operator X are solutions to the
equationf (x) = y. We first determine a closed ball inside S with center at
Xy on which X is a contraction operator. To this end fix

e €(0.1/4 DY) and let § (¢) < 0 be such that
I (o) = £ (2)](xy — ) =

€|l x;

— x|l . (3.3)
lo Gy, — x)IIZ €l
— x|l .. (3.4)

&l

e

Forevery xy,%, €S with ||lx; —x, || < lx, — x5l < 6 (e) /2
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This is possible by virtue of the C- differentiability of the function f. Thus we
have

||Xxl - J{'x2|| = ||Il — Xz — D_l[f{xlj - f{xg]]”
=D~ f! (xp) (% — xEjD_lf'{xE]{xl — Xy D_lm{xle
— x5)ll

< ID7HIIF" () = F' ()] (ey — 25 |
+ ||D_1||||m{x&x1 _3‘:2]”
= E”D_lll ”xl v x?_” + E"D—l””xl - x:”
< (1/2) llxy — x|l
For every x,,X, € § as above. It follows that X is a contraction operator on
the ball §,(x,), where o< = §(€)/2 € < 1/(4||D_1)||.
Now we determine a constant & = 0 such that
XS, (x,) © S, (x,)whenever v € 5,(Y,) Here v, = f(x,).in

fact we have

| Xxy — Xxgll < ID vy — F ()l = D7y — I
= 0(e)/4

whenever

ly — v, Il <8(e)/ (4D~ =B

Furthermore

X — x5ll = I Xx — Xxpll + | Xx, — x,ll

<(1/2) llx—x,+ 8(€)/4 < 8(€)/4+ 8(6)/4 = 8(e)/2
Forany x € 5,(x,). We have shown that f is locally invertible at

(xo, f (xo) ) and that forany y € 5, {_}?0), there exists a unique

x € S,(x,) With f (x) = y.

Theorem 3.4 [Ince(1956)]

Let the assumption of theorem 3.3 be satisfied with the C —differentiability of

the function f replaced by condition () of definition 3.1 then the conclusion of
theorem 3.3 remains valid.

Example 3.1[Leighton (1970)] let ] = [a, b] and let

S,=[x € R": ||xl| <7]

5= [x € C,(J); llooll, < 7]

Where 1 is a positive number.

We consider a continuous function F: ] x§, — R™ and the operator

X,5"— €, (J) defined as follows:

(xx)(t) = F(t,x (t)),t € Jyoo €'

We fist note that W is continuous on 5" in fact, since, F is uniformly

continuous on the compact set
Jx 5, for every e = 0 there exists §(e) = 0 such that
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IF(t,x) — flt.y)ll < e

Forevery x,¥ € §_ with ||x — y|l < &(e)and every t J. This implies
that

|Ux— Uyll., <€

Whenever x, ¥ € §'with ||lx,vyll., < &(€). In order to compute the
frechet derivative of X, we assume that the Jacobean matrix
F(t,x)=[(8F/ax)(t.x)], i=12.. n

exists and is continuous on [ x 5, . then given two function

xo €SP (0< 1, <7),h €] suchthat xo+ h €C, J x5+
hE "

we have

sup F(t + h(t) — F(t,xu(t)) — F, (t,xo(t))llh ()l

sEl

< sup{ || [(6F/'3-x F(t,xo(£))6,h (t))]

sEl
— F, (&2, ()|} lr (w)l.; (3:5)
Where 6, i = 1,2 ... nare function of ¢ lying in the interval (0,1). In (3.5)

we have used the mean value theorem for real valued functions on S5 as
follows:

Fi(t,xo()+ h(t))— F(t.ooy (£)) = <V F(ty,z,(DR(t) > i
=2.n

Where z, (t) = x,(t) + 8,h (t) form the uniform continuity of

V F(t,z,(t)h(t) > i=1i..non] x5, it follows that the frechet

derivative X () exists and is a bounded linear operator given by the formula

[X"(x0) 0 1(2) = F,(t,x0)(£)h (2) (3.6)
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Umudike, Abia State, Nigeria.

References

Argyros, 1.K., (2005). Approximate solution of operator equations with
application 1(6-11).

Athanassios, G. Kartsatos, (1973) Advanced Ordinary Differential Equations
Day, M.M. (1973) Normed linear spaces. 3" ed. New York. Springer

Dunford, N. and J.T. Schwartz (1958) Linear operators, 3 parts. New York:
Inter-science/Wiley.

Frechet, M. (1906). Sur Quelques Points Ducalcul Functionel Rend. Circ. Mat.
Palermo 22, 1 - 74.

Ince, E., (1956). Ordinary Differential Equations, New York: Dover.

Journal of Mathematical Sciences & Mathematics Education Vol. 14 No. 2 10



Kaplan, W., (1958). Ordinary Differential Equations, Reading, Mass.: Addision-

Wesley.
Leighton, W., (1970). Ordinary Differential Equations, 3rd Ed.; Belmont, Calif.:

Wadsworth.
Pontryagin, L., (1962). Ordinary Differential Equations, Reading mass.:

Addison-Wesley.

Journal of Mathematical Sciences & Mathematics Education Vol. 14 No. 2 11



