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Equations
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Abstract

In this paper, the Frechet differentiation of functions on Banach space 
was reviewed. We also investigated it’s algebraic properties and its relation by 
applying the concept to the inverse function theorem of the ordinary differential 
equations. To achieve the feat, some important results were considered which 
finally concluded that the Frechet derivative can extensively be useful in the 
study of ordinary differential equations.
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Introduction
The Frechet derivative, a result in mathematical analysis is derivative 

usually defined on Banach spaces. It is often used to formalize the functional 
derivatives commonly used in physics, particularly quantum field theory. The 
purpose of this work is to review some results obtained on the theory of the 
derivatives and apply it to the inverse function theorem in ordinary differential 
equations. 

1.0 Derivatives

Definition 1.1 [Kaplon (1958)]:
Let f be an operator mapping a Banach space X into a Banach space Y. If there 
exists a bounded linear operator T from X into Y such that:

Or,

Or 

then P is said to be Frechet differentiable at x0, and the bounded linear operator
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is called the first Frechet – derivative of f at x0. The limit in (1.1) is supposed to 
hold independent of the way that approaches 0. Moreover, the Frechet 
differential

is an arbitrary close approximation to the difference 
relative to , for small.
If f1 and f2 are differentiable at x0, then

Moreover, if f2 is an operator from a Banach space X into a Banach space X into 
a Banach space Z, and f1 is an operator from Z into a Banach space Y, their 
composition is defined by 

We know that is differentiable at x0 if f2 is differentiable at x0 and f1 is 
differentiable at f2 (x0) of Z, with (chain rule):

In order to differentiate an operator f we write:

where is a bounded linear operator for given with 

and 

Estimate (1.3) and (1.4) give

If is a continuous function of in some ball , 
then

We now present the definition of a mosaic:
Higher – order derivatives can be defined by induction:
Definition 1.2 [Argyros (2005)]
If f is (m – 1) – times Frechet – differentiable an integer), and an m –
linear operator A from X into Y exists such that 

then A is called the m – Frechet – derivative of f at x0, and 
                                                 (1.6)

Definition 1.3 [Koplan (1958)]
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Suppose where  is an open set, the function is 
classically differentiable at if 
The partial derivatives of  

The Jacobean matrix satisfies 

We say that the Jacobean matrix is the derivative of  , that is 
called total derivative 

Higher partial derivatives in product spaces can be defined as follows:
Define

                                            (1.7)
where X1, X2, … are Banach spaces and is the space of bounded 
linear operators fromm into The elements of are denoted byy etc. 
Similarly,

which denotes the space of bonded linear operators from into 
The elements are a generalization of 

m – linear operators.
Consider an operator f1 from space

into and thatt has partial derivative of orders in some ball 
, where and

For simplicity and without loss of generality we [Frechet (1906)] remember the 
original spaces so that 

hence, we write

A partial derivative of off att is an operator
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where 

Let denote the operator from into obtained by 
letting

for some Moreover, if

exists it will be called the partial Frechet – derivative of orderr of with 
respect to at 
Furthermore, if is Frechet – differentiable m times at , then

For any permutation of integers and any choice 
of point from respectively. Hence, if 

is an operator from into 
then

is called the Frechet 
derivative of at 

1.1 Integration
In this subsection we [Pantryagin (1962)] state results concerning the mean 
value theorem. Taylor’s theorem, and Riemannian integration without the 
proofs. The mean value theorem for differentiable real functions :

Where c does not hold in a Banach space setting. However, if is a 
differentiable operator between two Banach spaces then
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where 

Set

Divide the interval into n subintervals of lengths 
choose points inside corresponding subintervals and 

as in the real Riemann integral consider sums

where is the partition of the interval, and set

Definition 1.4 [ince (1956)]
If

exists, then it is called the Riemann integral from on [0,1], denoted by 

Definition 1.5 [Dunford and Schwartz (1958)]
A bounded operator on such that the set of points of discontinuity 
is of measure zero is said to be integrable on 
Theorem 1.1 [Day (1973)]
If is times Frechet – differentiable in , and 

is integrable from to any then

where 
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2.0 Theorem and Properties

Definition 2.1  [Arthanasius (1973)]
Assume that are Banach spaces, is an  open subset of 

is continuous and Frechet differentiable at every point of , 
Moreover assume that for every there exists such that   
If then 

for every  then 
is called differentiable  on 

Theorem 2.1  [Arthanasius (1973)]
Let be a convex function defined on an open convex subset of a Banach 
space that is continuous at then is frechet differentiable at 

Remark 2.1 
Obviously, we have earlier seen that Frechet differentiability has additive 
property and the product of two Frechet differentiable functions is Frechet 
differentiable function (the function that is Frechet differentiable is continuous 
and therefore locally bounded). Now we use boundedness of Frechet derivative 
and triangle inequality. A function which is Frechet differentiable at a point is 
continuous their.
3 THE INVERSE FUNCTION THEOREM 
The inverse function theorem is an important tool in the theory of differential 
equations It ensures the existences of solution of the equation . 
Although is not assumed to be compact and the contraction principle might 
not be   directly applicable, it is shown, in   the proof of the inverse function 
theorem, that the contraction principle can be used indirectly iff has some 
appropriate differentiability properties. 
Definition 3.1 [Arthanasius (1973)]
Let S be an open subset of the Banach space and let into the 
Banach space . Fix a point ) is 
said to be “locally invertible at if there exist two numbers 



Journal of Mathematical Sciences & Mathematics Education Vol. 14 No. 2    7

with the following property: for every y there 
exists a unique such thatt
Lemma 3.1 (uniqueness property of Frechet derivative)  [Kaplan (1958)] 
Let be given with S an open subset of the Banach space 
another Banach space. Suppose further that is Frechet differentiable at . 
Then the Frechet derivative of is unique. 
Proof. Suppose that are Frechet derivatives of with 
remainders respectively. Then we have 

for every are some open subsets of S 
containing x. It follows that  

The last member of (3.1) tends to zero as 
Let 

then is a linear operator on such that  

Consequently given there exists such that 
for every 

. Then is 

arbitrary, we obtain we conclude that 

The existence of a bounded Frechet derivative is equivalent to the 
continuity of this is the content of the next lemma. 
Lemma 3.2 [Argyros (2005)]
Let be given where is an open subset of a Banach space 

another Banach space  Lettt be Frechet differentiable at  . 
Then is continuous at if is a bounded linear operator .
Proof. Let be continuous at . Then for each there exists 

such that 

for all 
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Therefore.

For it follows that the linear operator is 
continuous at the point . 
We should note  here that the magnitude of the ball plays no role in the 
Frechet differentiability of . This means that, to define the frechet derivative 

we only need to have that certain differentiability conditions 
hold for all in a sufficiently small open neighborhood 

.
We now quote a well known theorem of functional analysis the “bounded 
inverse theorem” 

Theorem 3.2  [Day (1973)]
Let be Banach spaces and let be bounded linear, one to -one 
and onto. Then the inverse 

We are ready for the inverse function theorem.
Theorem 3.3 (inverse function theorem). [Arthanasius (1973)]
Let be Banach spaces and an open subset of be C-
differentiable on . Moreover, assume that the Frechet derivative of the function 
is one to  one and onto at some point then the function is locally 
invertible at the point 
Proof . Let . Then the operator exists and is defined on 

is bounded. Thus the equation is equivalent 
to the equation and define the operator 

as follows.

obviously, the fixed points of the operator are solutions to the 
equation . We first determine a closed ball inside with center at 

on which   is a contraction operator. To this  end fix 

For every 
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This is possible by virtue of the C- differentiability of the function . Thus we 
have 

For every as above. It follows that is a contraction operator on 
the ball , where .
Now we determine a constant such that 

. in 
fact we have 

whenever 

Furthermore 

For any . We have shown that is locally invertible at 
and that for any there exists a unique 

Theorem  3.4 [Ince(1956)]
Let the assumption of theorem 3.3 be satisfied with the C –differentiability of 
the function replaced by condition of definition 3.1 then the conclusion of 
theorem 3.3 remains valid.
Example 3.1[Leighton (1970)] let and let 

Where is a positive number.
We consider a continuous function and the operator 

defined as follows:

We fist note that is continuous on . in fact, since, is uniformly 
continuous on the compact set 

such that 
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For every with . This implies 
that 

Whenever . In order to compute the 
frechet derivative of , we assume that the Jacobean matrix

exists and is continuous on . then given two function 

we have 

Where  are function of lying in the interval  . In (3.5) 
we have used the mean value theorem for real valued functions on as 
follows: 

Where form the uniform continuity of 
it follows that the frechet 

derivative exists and is a bounded linear operator given by the formula  
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